
EEmm bb eedd dd eedd CCoo nntt rroo llllee rrss
UUssiinngg CC aa nndd AArrdd uuiinnoo // 22EE

JJaa mm eess MM.. FFiioo rree

Embedded Controllers 2

Embedded Controllers 3

Embedded Controllers

Using C and Arduino

by

James M. Fiore

Version 2.0 .2, 31 August 2016

Embedded Controllers 4

This Embedded Controllers Using C and Arduino, by James M. Fiore is copyrighted under the terms

of a Creative Commons license:

This work is freely redistributable for non-commercial use, share-alike with attribution

Published by James M. Fiore via dissidents

For more information or feedback, contact:

James Fiore, Professor

Electrical Engineering Technology

Mohawk Valley Community College

1101 Sherman Drive

Utica, NY 13501

jfiore@mvcc.edu

www.mvcc.edu/jfiore

Cover art by the author

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://www.dissidents.com/
http://blog.arduino.cc/
mailto:jfiore@mvcc.edu
www.mvcc.edu/jfiore

Embedded Controllers 5

Introduction

This text is designed to introduce and expand upon material related to the C programming language and

embedded controllers, and specifically, the Arduino development system and associated Atmel ATmega

microcontrollers. It is intended to fit the time constraints of a typical 3 to 4 credit hour course for

electrical engineering technology and computer engineering technology programs, although it could also

fit the needs of a hardware-oriented course in computer science. As such, the text does not attempt to

cover every aspect of the C language, the Arduino system or Atmel AVR microcontrollers. The first

section deals with the C language itself. It is assumed that the student is a relative newcomer to the C

language but has some experience with another high level language, for example, Python. This means

concepts such as conditionals and iteration are already familiar and the student can get up and running

fairly quickly. From there, the Arduino development environment is examined.

Unlike the myriad Arduino books now available, this text does not simply rely on the Arduino libraries.

As convenient as the libraries may be, there are other, sometimes far more efficient, ways of

programming the boards. Many of the chapters examine library source code to see ñwhatôs under the

hoodò. This more generic approach means it will be easier for the student to use other processors and

development systems instead of being tightly tied to one platform.

All Atmel schematics and data tables are derived from the latest version (October, 2014) of the Atmel

328P documentation which may be found at http://www.atmel.com/devices/ATMEGA328P.aspx This

serves as the final word on the operation and performance of the 328P and all interested parties should

become familiar with it.

There is a companion lab manual to accompany this text. Other OER (Open Educational Resource) lab

manuals in this series include DC and AC Electrical Circuits, Computer Programming with Python and

Semiconductor Devices. An OER is available for Operational Amplifiers and Linear Integrated Circuits,

and a Semiconductor Devices text is due in early 2017. Please check my web sites for the latest versions.

A Note from the Author

This text is used at Mohawk Valley Community College in Utica, NY, for our ABET accredited AAS

program in Electrical Engineering Technology. Specifically, it is used in our second year embedded

controllers course. I am indebted to my students, co-workers and the MVCC family for their support and

encouragement of this project. While it would have been possible to seek a traditional publisher for this

work, as a long-time supporter and contributor to freeware and shareware computer software, I have

decided instead to release this using a Creative Commons non-commercial, share-alike license. I

encourage others to make use of this manual for their own work and to build upon it. If you do add to this

effort, I would appreciate a notification.

ñWhen things get so big, I donôt trust them at all

You want some control-you gotta keep it smallò

- Peter Gabriel

http://www.atmel.com/devices/ATMEGA328P.aspx

Embedded Controllers 6

Embedded Controllers 7

Table of Contents

1. Course Introduction 8

2. C M emory Organization 10

3. C Language Basics 14

4. C Language Basics II 24

5. C Storage Types and Scope . . . 32

6. C Arrays and Strings 36

7. C Conditionals and Looping . . . 40

8. C Pointers 48

9. C Look -Up Tables 52

10. C Structures 56

11. C Linked Lists* 60

12. C Memory * 64

13. C File I/O * 68

14. C Command Line Arguments * . . . 72

15. Embedded Programming 74

16. Hardware Architecture 78

17. AVR ATmega 328P Overview ** . . . 84

18. Bits & Pieces: includes and defines . . 90

19. Bits & Pieces: Digital Output Circuitry . . 98

20. Bits & Pieces: Digital Input Circuitry . . 102

21. Bits & Pieces: pinMode 106

22. Bits & Pieces: digitalW rite 112

23. Bits & Pieces: delay 116

24. Bits & Pieces: digitalRead 124

25. Bits & Pieces: Analog Input Circuitry . . 132

26. Bits & Pieces: analogRead 136

27. Bits & Pieces: analogWrite 142

28. Bits & Pieces: Timer/Counters . . . 146

29. Bits & Pieces: Interrupts 154

Appendices 160

Index 165

* Included for more complete language coverage but seldom used for small to medium scale embedded work.

** Including modest comic relief for film noir buffs .

Embedded Controllers 8

1. Course Introduction

1.1 Overview

This course introduces the C programming language and specifically addresses the issue of embedded

programming. It is assumed that you have worked with some other high level language before, such as

Python, BASIC, FORTRAN or Pascal. Due to the complexities of embedded systems, we begin with a

typical desktop system and examine the structure of the language along with basic examples. Once we

have a decent grounding in syntax, structure, and the development cycle, we switch over to an embedded

system, namely an Arduino based development system.

This course is designed so that you can do considerable work at home with minimal cost, if you choose

(entirely optional, but programming these little beasties can be addicting so be fore warned). Along with

this course text you will need an Arduino Uno board (about $25) and a USB host cable. A small ñwall

wartò power adapter for it may also be useful. Thereôs a lot of free C programming info on the ónet but if

you prefer print books and want more detail, you may also wish to purchase one of the many C

programming texts available. Two good titles are Kochanôs book Programming in C and the one by

Deitel & Deitel C-How to Program. Whichever book you choose, make sure that its focus is C, not C++.

You will also need a desktop C compiler. Just about any will do, including Visual C/C++, Borland, Code

Warrior, or even GCC. A couple of decent freeware compilers available on the ónet include Pelles C and

Miracle C.

1.2 Frequently Asked Questions

Why learn C language programming?

C is perhaps the most widely used development language today. That alone is a good reason to

consider it, but thereôs more:

¶ It is a modern structured language that has been standardized (ANSI).

¶ It is modular, allowing reuse of code.

¶ It is widely supported, allowing source code to be used for several different platforms by just

recompiling for the new target.

¶ Its popularity means that several third-party add-ons (libraries and modules) are available to

ñstretchò the language.

¶ It has type checking which helps catch errors.

¶ It is very powerful, allowing you to get ñclose to the metalò.

¶ Generally, it creates very efficient code (small space and fast execution).

Whatõs the difference between C and C++?

C++ is a superset of C. First came C, then came C++. In fact, the name C++ is a programmerôs joke

because ++ is the increment operator in C. Thus, C++ literally means ñincrement Cò, or perhaps ñgive

me the next Cò. C++ does everything C does plus a whole lot more. These extra features donôt come

free and embedded applications usually cannot afford the overhead. Consequently, although much

http://www.arduino.cc/
http://www.smorgasbordet.com/pellesc/
http://www.c-compiler.com/

Embedded Controllers 9

desktop work is done in C++ as well as C, most embedded work is done in C. Desktop development

systems are usually referred to as C/C++ systems meaning that theyôll do both. Embedded

development systems may be strictly C (as is ours).

Where can I buy an Arduino development board?

The Arduino Uno board is available from a variety of sources including Digi-Key, Mouser, Parts

Express and others. Shop around!

Whatõs the difference between desktop PC development and embedded

programming?

Desktop development focuses on applications for desktop computers. These include things like word

processors, graphing utilities, games, CAD programs, etc. These are the things most people think of

when they hear the word ñcomputerò. Embedded programming focuses on the myriad nearly invisible

applications that surround us every day. Examples include the code that runs your microwave oven,

automobile engine management system, cell phone, and many others. In terms of total units,

embedded applications far outnumber desktop applications. You may have one or even a few PCs in

your house, but you probably use dozens of embedded applications every day. Embedded

microcontrollers tend to be much less powerful but also much less expensive than their PC

counterparts. The differing programming techniques are an integral part of this course and we shall

spend considerable time examining them.

How does C compare with Python?

If, like many students taking this course, your background is with the Python language, you may find

certain aspects of C a little odd at first. Some of it may seem overly complicated. Do not be alarmed

though. The core of the language is actually simple. Python tends to hide things from the programmer

while C doesnôt. Initially, this seems to make things more complicated, and it does for the most

simple of programs. For more complicated tasks C tends to cut to the heart of the matter. Many kinds

of data manipulation are much easier and more efficient in C than in other languages. One practical

consideration is that C is a compiled language while most versions of Python are essentially

interpreted. This means that there is an extra step in the development cycle, but the resulting compiled

program is much more efficient. We will examine why this is so a little later.

How does C compare with assembly language?

Assembly has traditionally been used when code space and speed are of utmost importance. Years

ago, virtually all embedded work was done in assembly. As microcontrollers have increased in power

and the C compilers have improved, the tables have turned. The downside of assembly now weighs

against it. Assembly is processor-specific, unstructured, not standardized, nor particularly easy to read

or write. C now offers similar performance characteristics to assembly but with all the advantages of a

modern structured language.

http://arduino.cc/en/Main/ArduinoBoardUno
http://www.python.org/

Embedded Controllers 10

2. C Memory Organization

2.1 Introduction

When programming in C, it helps if you know at least a little about the internal workings of simple

computer systems. As C tends to be ñclose to the metalò, the way in which certain things are performed as

well preferred coding techniques will be more apparent.

First off, letôs narrow the field a bit by declaring that we will only investigate a fairly simple system, the

sort of thing one might see in an embedded application. That means a basic processor and solid state

memory. We wonôt worry about disk drives, monitors, and so forth. Specific details concerning controller

architecture, memory hardware and internal IO circuitry are covered in later chapters.

2.2 Guts 101

A basic system consists of a control device called a CPU (central processing unit), microprocessor, or

microcontroller. There are subtle distinctions between these, but we have little need to go very deep at

this point. Microcontrollers tend not to be as powerful as standard microprocessors in terms of processing

speed, but they usually have an array of input/output ports and hardware functions (such as analog to

digital or digital to analog converters) on chip that typical microprocessors do not. To keep things simple

we shall use the term ñprocessorò as a generic.

Processors are often connected to external memory (RAM chips). Microcontrollers generally contain

sufficient on-board memory to alleviate this requirement, but it is worthwhile to note that we are not

talking about large (megabyte) quantities. A microcontroller may only contain a few hundred bytes of

memory, but in simple applications that may be sufficient. Remember, a byte of memory consists of 8

bits, each bit being thought of as a 1/0, high/low, yes/no, or true/false pair.

In order for a processor to operate on data held in memory, the data must first be copied into a processorôs

register (it may have dozens of registers). Only in a register can mathematical or logical operations be

carried out. For example, if you desire to add one to variable, the value of the variable must first be

copied into a register. The addition is then performed on the register contents yielding the answer. This

answer is then copied back to the original memory location of the variable. It seems a little roundabout at

first, but donôt worry, the C language compiler will take care of most of those details for you.

2.3 Memory Maps

Every byte of memory in a computer system has an address associated with it. This is a requirement.

Without an address, the processor has no way of identifying a specific location in memory. Generally,

memory addressing starts at 0 and works its way up, although some addresses may be special or

ñreservedò in some systems. That is, a specific address might not refer to normal memory, but might refer

to a certain input/output port for external communication. Very often it is useful to draw a ñmemory

mapò. This is nothing more than a huge array of memory slots. Some people draw them with the lowest

(starting) address at the top and other people draw them with the lowest address at the bottom.

Embedded Controllers 11

Hereôs an example with just six bytes of memory:

address 0

address 1

address 2

address 3

address 4

address 5

Figure 2.1, simple memory map

Each address or slot represents a place we can store one byte. If we had to remember specific addresses

we would be doing a lot of work. Instead, the C compiler will keep track of this for us. For example, if we

declare a char named X, it might be at address 2. If we need to print that value, we donôt have to say

ñfetch the value at address 2ò. Instead we say; ñfetch the value of Xò and the compiler generates code to

make this work out to the proper address (2). This abstraction eases our mental burden considerably. As

many variables require more than one byte, we may need to combine addresses to store a single value. For

example, if we chose a short int , that needs two bytes. Suppose this variable starts at address 4. It will

also require the use of address 5. When we access this variable the compiler automatically generates the

code to utilize both addresses because it ñknowsò weôre using a short int . Our little six byte memory

map could hold 6 char , 3 short int , 1 long int with 1 short int , 1 long int with 2 char , or

some other similar combination. It cannot hold a double as that requires 8 bytes. Similarly, it could not

hold an array of 4 or more short int .

Arrays are of special interest as they must be contiguous in memory. For example, suppose a system has

1000 bytes of memory and a 200 element char array was declared. If this array starts at address 500 then

all of the slots from 500 through 699 are allocated for the array. It cannot be created in ñscatteredò fashion

with a few bytes here and a few bytes there. This requirement is due to the manner in which arrays are

indexed (accessed), as we shall see later.

2.4 Stacks

Many programs need only temporary storage for certain variables. That is, a variable may only be used

for a limited time and then ñthrown awayò. It would be inefficient to allocate permanent space for this

sort of variable. In its place, many systems use a stack. Ordinarily, an application is split into two parts, a

code section and a data section. The data section contains the ñpermanentò (global) data. As these two

will not consume the entire memory map, the remainder of the memory is often used for temporary

storage via a stack. The stack starts at the opposite end of the memory map and grows toward the code

and data sections. It is called a First-In-Last-Out stack or FILO stack. It works like a stack of trays in a

Embedded Controllers 12

cafeteria. The first try placed on the stack will be the last one pulled off and vice versa. When temporary

variables are needed, this memory area is used. As more items are needed, more memory is taken up. As

our code exits from a function, the temporary (auto) variables declared there are no longer needed, and

the stack shrinks. If we make many, many function calls with many, many declared variables, it is

possible for the stack to overrun the code and data sections of our program. The system is now corrupt,

and proper execution and functioning of the program are unlikely.

address 0

area used by code and data

area currently unused

stack area, grows toward address 0

address 65,535

Figure 2.2, basic memory layout

Above is a memory map example of a system with 64k bytes of memory (k=1024 or 210). Individual

memory slots are not shown. Only the general areas are shown.

It is worthwhile to note that in some systems, code and data are in a common area as shown (Von

Neumann architecture) while in others they are physically split (Harvard architecture). Whether split or

not, the basic concepts remain. So, why would we want to split the two areas, each accessed via its own

memory bus1? Simple, separating the code and data allows the processor to fetch the next instruction

(code) using a memory bus that is physically separate from the data bus it is currently accessing. A shared

code/data memory bus would require special timing to coordinate this process as only one thing can be on

the bus at any given time. Having two separate memory buses will speed execution times.

1 A bus typically refers to a collection of wires or connections upon which multiple data bits (or address bits) are

sent as a group.

ŷ

Embedded Controllers 13

Embedded Controllers 14

3. C Language Basics

3.1 Introduction

C is a terse language. It is designed for professional programmers who need to do a lot with a little code

quickly. Unlike BASIC or Python, C is a compiled language. This means that once you have written a

program, it needs to be fed into a compiler that turns your C language instructions into machine code that

the microprocessor or microcontroller can execute. This is an extra step, but it results in a more efficient

program than an interpreter. An interpreter turns your code into machine language while itôs running,

essentially a line at a time. This results in slower execution. Also, in order to run your program on another

machine, that machine must also have an interpreter on it. You can think of a compiler as doing the

translation all at once instead of a line at a time.

Unlike many languages, C is not line oriented, but is instead free-flow. A program can be thought of as

consisting of three major components: Variables, statements and functions. Variables are just places to

hold things, as they are in any other language. They might be integers, floating point (real) numbers, or

some other type. Statements include things such as variable operations and assignments (i.e., set x to 5

times y), tests (i.e., is x more than 10?), and so forth. Functions contain statements and may also call other

functions.

3.2 Variable Naming, Types and Declaration

Variable naming is fairly simple. Variable names are a combination of letters, numerals, and the

underscore. Upper and lower case can be mixed and the length is typically 31 characters max, but the

actual limit depends on the C compiler in use. Further, the variable name cannot be a reserved (key) word

nor can it contain special characters such as . ; , * - and so on. So, legal names include things like x ,

volts , resistor7 , or even I_Wanna_Go_Home_Now.

C supports a handful of variable types. These include floating point or real numbers in two basic flavors:

float , which is a 32 bit number, and double , which is a higher precision version using 64 bits. There

are also a few integer types including char , which is 8 bits, short int , which is 16 bits, and long

int , which is 32 bits. As char is 8 bits, it can hold 2 to the 8th combinations, or 256 different values.

This is sufficient for a single ASCII character, hence the name. Similarly, a short int (or short , for

short!) can hold 2 to the 16th combinations, or 65,536 values. char s and int s may be signed or

unsigned (signed , allowing negative values, is the default). There is also a plain old int , which might

be either 16 or 32 bits, depending on which is most efficient for the compiler (to be on the safe side, never

use plain old int if the value might require more than 16 bits).

Sometimes you might also come across special double long integers (also called long longs) that take up 8

bytes as well as 80 bit extended precision floats (as defined by the IEEE).

Embedded Controllers 15

Here is a table to summarize the sizes and ranges of variables:

Variable Type Bytes Used Minimum Maximum

char 1 -128 127

unsigned char 1 0 255

short int 2 -32768 32767

unsigned short int 2 0 65535

long int 4 å -2 billion å 2 billion

unsigned long int 4 0 å 4 billion

float

(6 significant digits)
4 ± 1.2 E -38 ± 3.4 E +38

double

(15 significant digits)
8 ± 2.3 E -308 ± 1.7 E +308

Figure 3.1, numeric types and ranges

C also supports arrays and compound data types. We shall examine these in a later segment.

Variables must be declared before they are used. They cannot be created on a whim, so to speak, as they

are in Python. A declaration consists of the variable type followed by the variable name, and optionally,

an initial value. Multiple declarations are allowed. Here are some examples:

char x; declares a signed 8 bit integer called x

unsigned char y; declares an unsigned 8 bit integer called y

short z, a; declares two signed 16 bit integers named z and a

float b =1.0; declares a real number named b and sets its initial value to 1.0

Note that each of these declarations is followed with a semi-colon. The semi-colon is the C language way

of saying ñThis statement ends hereò. This means that you can be a little sloppy (or unique) in your way

of dealing with spaces. The following are all equivalent and legal:

float b = 1.0;

float b=1.0;

float b = 1.0 ;

Embedded Controllers 16

3.3 Functions

Functions use the same naming rules as variables. All functions use the same template that looks

something like this:

return_value function_name(function argument list)

{

 statement(s)

}

Figure 3.1, basic function template

You might think of the function in the mathematical sense. That is, you give it some value(s) and it gives

you back a value. For example, your calculator has a sine function. You send it an angle and it gives you

back a value. In C, functions may have several arguments, not just one. They might not even have an

argument. Also, C functions may return a value, but they donôt have to. The ñgutsò of the function are

defined within the opening and closing brace pair {} . So, a function which takes two integers, x and y, as

arguments, and returns a floating point value will look something like this:

float my_function(int x, int y)

{

 // ... appropriate statements here ...

}

If the function doesnôt take or return values, the word void is used. If a function neither requires values

nor returns a value, it would look like:

void other_function(void)

{

 // ... appropriate statements here ...

}

This may appear to be extra fussy work at first, but the listing of data types makes a lot of sense because

C has something called type checking. This means that if you try to send a function the wrong kind of

variable, or even the wrong number of variables, the compiler will warn you that youôve made a mistake!

Thus if you try to send my_function() above two floats or three integers, the compiler will complain

and save you a big headache during testing.

All programs must have a place to start, and in C, program execution begins with a function called main .

This does not have to be the first function written or listed, but all programs must have a function called

main . Hereôs our first program, found in Figure 3.2, following:

Embedded Controllers 17

/* Our first program */

void main(void)

{

 float x = 2.0;

 float y = 3.0;

 float z;

 z = x*y/(x+y);

}

Figure 3.2, a simple program

There is only one function here, main() . It takes no variables and returns nothing. Whatôs the other stuff?

First, the /* */ pair denotes a comment2. Anything inside of the comment pair is ignored by the

compiler. A C comment can stretch for many lines. Once inside the function, three variables are declared

with two of them given initial values. Next, the variables x and y are multiplied together, divided by their

sum, and assigned to z . As C is free-flow, an equivalent (but ugly) version is:

/* Our first program */ void mai n(void){

float x=2.0;float y=3.0;float z;z=x*y/(x+y);}

Figure 3.3, alternate format (to be avoided)

This is the complete opposite of Python which has very rigid spacing and formatting rules.

Now, suppose that this add, multiply, divide operation is something that you need to do a lot. We could

split this off into a separate function. Our program now looks like Figure 3.4 on the following page:

2 C also allows // to denote a single line comment without the ñbackend pairingò.

Embedded Controllers 18

/* Our second program */

float add_mult_div(float a, float b)

{

 float answer;

 answer = a*b/(a+b);

 return(answer);

}

void main(void)

{

 float x = 2.0;

 float y = 3.0;

 float z;

 z = add_mult_div(x, y);

}

Figure 3.4, program with separate function

The new math function takes two float s as arguments and returns a float to the caller. The compiler

sees the new function before it is used in main() , thus, it already ñknowsò that it should be sent two

float s and that the return value must be assigned to a float . It is very important to note that the new

math function uses different variable names (a and b) from the caller (x and y). The variables in the new

math function are really just place-holders. The values from the original call (x and y) are copied to these

new variables (a and b) and used within the new function. As they are copies, they can be altered without

changing the original values of x and y . In this case, x and y are said to be local to the main() function

while a and b are local to the add_mult_div() function. In other words, a isnôt visible from main()

so you canôt accidentally alter it! Similarly, x isnôt visible from add_mult_div() , so you canôt

accidentally alter it either. This is a positive boon when dealing with large programs using many variable

names. While itôs not usually preferred, there are times when you want a variable to be known

ñeverywhereò. These are called global items. You can make variables global by simply declaring them at

the beginning of the program outside of the functions (i.e., right after that initial comment in our

example).

3.4 Libraries

The examples above are rather limited because, although they perform a calculation, we have no way of

seeing the result! We need some way to print the answer to the computer screen. To do this, we rely on

system functions and libraries. There are a series of libraries included with most C development systems

to cover a variety of needs. Essentially, someone has already coded, tested and compiled a bunch of

functions for you. You add these functions to your program through a process called linking. Linking

simply combines your compiled code along with any required library code into a final executable

program. For basic printouts, data input, and the like, we use the standard IO (Input/Output) library, or

stdio for short. There is a function in this library named printf () for ñprint formattedò. So that the

Embedded Controllers 19

compiler can do type checking, it must know something about this new function. We tell the compiler to

look into a special file called a header file to find this information. Every library will have an associated

header file (usually of the same name) and it will normally end with a .h file extension. The compiler

directive is called an include statement.

// Our third program, this is an example of a single line comment

#include <stdio.h>

void main(void)

{

 printf (ñHello world.\ nò);

}

Figure 3.5, program with library function call

This program simply prints the message Hello world. to the screen. The backslash-n combo is a special

formatting token that means add a new line (i.e., bring the cursor to the line below). If we did not add the

#include directive, the compiler wouldnôt know anything about printf() , and would complain when

we tried to use it. So, whatôs in a header file? Well, among other things they contain function prototypes.

The prototypes are nothing more than a template. You can create your own by cutting and pasting your

function name with argument list and adding a semicolon to it. Here is the function prototype for our

earlier math function:

float add_mult_div(float a, float b);

You could make your own library of functions if you want. To use them, all youôd need is an appropriate

include statement in your code, and remember to add in your library code with the linker. This will

allow you to reuse code and save time. We will look at multiple file projects and more on libraries in a

later segment.

Consequently, if we want to print out the answer to the first program, weôd wind up with something like

Figure 3.6 on the following page:

Embedded Controllers 20

/* Our fourth program */

#include <stdio.h>

void main(void)

{

 float x = 2.0;

 float y = 3.0;

 float z;

 z = x*y/(x+y);

 printf(ñThe answer is %f\ nò, z);

}

Figure 3.6, a more complete program

The %f in the printf() function serves as a place holder for the variable z . If you need to print several

values you can do something like this:

printf(ñThe answer from %f and %f is %f\ nò, x, y, z);

In this case, the first %f is used for x , the second %f for y , and the final one for z . The result will look

like:

The answer from 2.0 and 3.0 is 1.2

3.5 Some Simple Math

C uses the same basic math operators as many other languages. These include +, - , / (divide), and

* (multiply). Parentheses are used to group elements and force hierarchy of operations. C also includes %

for modulo. Modulo is an integer operation that leaves the remainder of a division, thus 5 modulo 7 is 2.

The divide behaves a little differently with integers than with floats as there can be no remainder. Thus 9

integer divide 4 is 2, not 2.25 as it would be if you were using floats. C also has a series of bit

manipulators that we will look at a little later. For higher math operations, you will want to look at the

math library (math.h header file). Some examples are sin() , cos() , tan() , log10() (common log)

and pow() for powers and roots. Do not try to use ̂ as you do on many calculators. x raised to the y

power is not x^y but rather pow(x, y) . The ̂ operator has an entirely different meaning in C!

Recalling what we said earlier about libraries, if you wanted to use a function like sin() in your code,

youôd have to tell the compiler where to find the prototype and similar info. At the top of your program

youôd add the line:

#include <math.h>

Embedded Controllers 21

A final caution: The examples above are meant to be clear, but not necessarily the most efficient way of

doing things. As we shall see, sometimes the way you code something can have a huge impact on its

performance. Given the power of C, expert programmers can sometimes create code that is nearly

indecipherable for ordinary people. There is a method behind the apparent madness.

3.6 The program creation/development cycle

To create a C program:

1. Do the requisite mental work. This is the most important part.

2. Create the C source code. This can be done using a text editor, but is normally done within the

IDE (Integrated Development Environment). C source files are plain text and saved with a ñ.cò

extension.

3. Compile the source code. This creates an assembly output file. Normally, compiling

automatically fires up the assembler, which turns the assembly file into a machine language

output file.

4. Link the output file with any required libraries using the linker. This creates an executable file.

For desktop development, this is ready to test.

5. For embedded development, download the resulting executable to the target hardware (in our

case, the Arduino development board). For the Arduino, steps 3, 4, and 5 can be combined by

selecting ñBuildò from the IDE menu.

6. Test the executable. If it doesnôt behave properly, go back to step one.

3.7 Summary

Here are some things to keep in the back of your mind when learning C:

¶ C is terse. You can do a lot with a little code.

¶ As it allows you to do almost anything, a novice can get into trouble very quickly.

¶ It is a relatively thin language, meaning that most ñsystem functionsò are not part of the language

per se, but come from link-time libraries.

¶ Function calls, function calls, and more function calls!

¶ Source code is free flow, not line oriented. A ñlineò of code is usually terminated with a
semicolon.

¶ Shortcuts allow experts to create code that is almost indecipherable by normal programmers.

¶ All variables must be declared before use (not free flow as in Python).

¶ Variables can be global or local in scope. That is, a local variable can be ñknownò in one place of
the program and not in another.

Embedded Controllers 22

3.8 Exercises

1. Write a C code comment that includes your name and the date. Use both the single line and the multi-

line styles.

2. Write a function that will take three floating point values as arguments. The function should return the

average value of the three arguments.

3. Write a program that will print out your name.

Embedded Controllers 23

Embedded Controllers 24

4. C Basics II

4.1 Input and Output

Weôve seen the use of printf() to send information to the computer screen. printf() is a very large

and complicated function with many possible variants of format specifiers. Format specifiers are the ñ%

thingsò used as placeholders for values. Some examples are:

%f float

%lf double (long float)

%e float using exponent notation

%g float using shorter of e or f style

%d decimal integer

%ld decimal long integer

%x hexadecimal (hex or base 16) integer

%o octal (base 8) integer

%u unsigned integer

%c single character

%s character string

Figure 4.1, print format types

Suppose that you wanted to print out the value of the variable ans in decimal, hex, and octal. The

following instruction would do it all:

printf(ñThe answer is %d, or hex %x, or octal %o.\ nò, ans, ans, ans);

Note how the three variables are labeled. This is important. If you printed something in hex without some

form of label, you might not know if it was hex or decimal. For example, if you just saw the number ñ23ò,

how would you know itôs 23 decimal or 23 hex (35 decimal)? For that matter, how would you set a hex

constant in your C code? The compiler would have no way of ñknowingò either. To get around this, hex

values are prefixed with 0x . Thus, we have 0x23 for hex 23. The printf() function does not

automatically add the 0x on output. The reason is because it may prove distracting if you have a table

filled only with hex values. Itôs easy enough to use 0x%d instead of just %d for the output format.

You can also add a field width specifier. For example, %5d means print the integer in decimal with 5

spaces minimum. Similarly, %6.2f means print the floating point value using 6 spaces minimum. The

ñ.2ò is a precision specifier, and in this case indicates 2 digits after the decimal point are to be used. As

you can see, this is a very powerful and flexible function!

The mirror input function is scanf(). This is similar to Pythonôs input statement. Although you can

ask for several values at once, it is generally best to ask for a single value when using this function. It uses

the same sort of format specifiers as printf() . There is one important point to note. The sc anf()

function needs to know where to place the entered value in computer memory. Simply informing it of the

Embedded Controllers 25

name of the variable is insufficient. You must tell it where in memory the variable is, in other words, you

must specify the address of the variable. C uses the & operator to signify ñaddress ofò. For example, if you

wish to obtain an integer from the user and place it in a variable called voltage , you might see a

program fragment like soé

printf(ñPlease enter the voltage:ò);

scanf(ñ%dò, &voltage);

It is very common for new programmers to forget the &. Be forewarned!

4.2 Variable Sizes

A common question among new programers is ñWhy are there so many sizes of variables available?ò We

have two different sizes of reals; float at 32 bits, and double at 64 bits. We also have three different

sizes of intgers at 8, 16, and 32 bits each3. In many languages, thereôs just real and integer with no size

variation, so why does C offer so many choices? The reason is that ñone size doesnôt fit allò. You have

options in order to optimize your code. If you have a variable that ranges from say, 0 to 1000, thereôs no

need to use more than a short (16 bit) integer. Using a 32 bit integer simply uses more memory. Now, you

might consider 2 extra bytes to be no big deal, but remember that we are talking about embedded

controllers in some cases, not desktop systems. Some small controllers may have only a few hundred

bytes of memory available for data. Even on desktop systems with gigabytes of memory, choosing the

wrong size can be disastrous. For example, suppose you have a system with an analog to digital converter

for audio. The CD standard sampling rate is 44,100 samples per second. Each sample is a 16 bit value (2

bytes), producing a data rate of 88,100 bytes per second. Now imagine that you need enough memory for

a five minute song in stereo. That works out to nearly 53 megabytes of memory. If you had chosen long

(32 bit) integers to hold these data, youôd need about 106 megabytes instead. As the values placed on an

audio CD never exceed 16 bits, it would be foolish to allocate more than 16 bits each for the values. Data

sizes are power-of-2 multiples of a byte though, so you canôt choose to have an integer of say, 22 bits

length. Itôs 8, 16, or 32 for the most part (some controllers have an upper limit of 16 bits).

In the case of float versus double , float is used where space is at a premium. It has a smaller range

(size of exponent) and a lower precision (number of significant digits) than double . double is generally

preferred and is the norm for most math functions. Plain floats are sometimes referred to as singles (that

is, single precision versus double precision).

If you donôt know the size of a particular data item (for example an int might be either 16 or 32 bits

depending on the hardware and compiler), you can use the sizeof() command. This looks like a

function but itôs really built into the language. The argument is the item or expression youôre interested in.

It returns the size required in bytes.

size = size of(int);

size will be either 2 or 4 depending on the system.

3 In some systems, 80 bit doubles and 64 bit integers are also available.

Embedded Controllers 26

4.3 More Math

OK, so what happens if you add or multiply two short int together and the result is more than 16 bits

long? You wind up with an overrange condition. Note that the compiler cannot warn you of this because

whether or not this happens will depend entirely on values entered by the user and subsequently computed

within the program. Hopefully, you will always consider maximum value cases and choose appropriate

data sizes and this wonôt be a problem. But what actually happens? To put it simply, the top most bits will

be ignored. Consider an 8 bit unsigned integer. It goes from 0 to 255. 255 is represented as eight 1s. What

happens if you add the value 1 to this? You get a 9 bit number: a 1 followed by eight 0s. That ninth bit is

thrown away as the variable only has eight bits. Thus, 255 plus 1 equals 0! This can create some serious

problems! For example, suppose you wanted to use this variable as a loop counter. You want to go

through a loop 500 times. The loop will never terminate because an 8 bit integer canôt go up that high.

You keep adding one to it, but it keeps flipping back to 0 after it hits 255. This behavior is not all bad; it

can, in fact, be put to good use with things like interrupts and timers, as we shall see.

What happens if you mix different types of variables? For example, what happens if you divide a double

by an int or a float by double ? C will promote the lesser size/precision types to the larger type and

then do the operation. This can sometimes present a problem if you try to assign the result back to

something smaller, even if you know it will always ñfitò. The compiler will complain if you divide a

long int by another long int and try to assign the result to a short int . You can get around this by

using a cast. This is your way of telling the compiler that you know there is a potential problem, but to go

ahead anyway (hopefully, because you know it will always work, not just because you want to defeat the

compiler warning). Casting in C is similar to type conversion in Python (e.g., the int() function). Hereôs

an example.

short int x, y=20;

long int z=3;

x=(short int)(y/z);

Note how you are directing the compiler to turn the division into a short int . Otherwise, the result is in

fact a long int due to the promotion of y to the level of z. Whatôs the value of x? Why itôs 6 of course!

Remember, the fractional part is meaningless, and thus lost, on integer divides.

Casting is also useful when using math functions. If you have to use float , you can cast them to/from

double to make use of functions defined with double . For example, suppose a, b, and c are declared as

float but you wish to use the pow() function to raise a to the b power. pow() is defined as taking two

double arguments and returning a double answer.

c = (float)pow((double)a, (double)b);

This is a very explicit example. Many times you can rely on a ñsilent castò promotion to do your work for

you as in the integer example above. Sometimes being explicit is a good practice just as a form of

documentation.

Embedded Controllers 27

4.4 Bitwise Operations

Sometimes youôd like to perform bitwise operations rather than ordinary math. For example, what if you

want to logically AND two variables, bit by bit? Bitwise operations are very common when programming

microcontrollers as a means of setting, clearing and testing specific bits in control registers (for example,

setting a specific pin on a digital port to read mode instead of write mode). C has a series of bitwise

operators. They are:

& AND

| OR

^ XOR

~ Oneôs Complement

>> Shift Right

<< Shift Left

Figure 4.2, bitwise operators

Note the double use of & for ñaddress ofò and now AND. The unary operation is always ñaddress ofò, and

the binary operation is always AND, so a & b would not imply the address of b. If you wanted to AND

x with y , shift the result 2 places to the left and assign the result to z, youôd use:

z = (x&y)<<2;

Letôs look at a few examples. Suppose the variables X, Y and Z are unsigned char s. X and Y are set to

13 and 134, respectively. In hex, thatôs 0x0d and 0x86 for bit patterns of 00001101 and 10000110.

Z = X<<3; // Z is 01101000 or 0x68

Z = X>>1; // Z is 00000110 or 0x06

Z = ~X; // Z is 11110010 or 0xf2

Z = X|Y; // Z is 10001111 or 0x8f

Z = X&Y; // Z is 00000100 or 0x04

Z = X^Y; // Z is 10001011 or 0x8b

4.5 Setting, Clearing and Reading Register Bits

Bitwise operations may appear to be somewhat arcane to the uninitiated but are in fact commonly used. A

prime use is in setting, clearing and testing specific bits in registers. One example involves configuring

bidirectional ports for input or output mode via a data direction register, typically abbreviated DDR.

Each bit of the DDR represents a specific output pin. A logic high might indicate output mode while a

logic low would indicate input mode. Assuming DDR is an 8 bit register, if you wanted to set all bits

except the 0th bit to input mode, you could write4:

DDR = 0x01; // set bit zero to output mode

4 In C, bit position counting, like most sequences, starts from position 0 not position 1.

Embedded Controllers 28

If sometime later you wanted to also set the 1st and 2nd bits to output mode while keeping everything else

intact, the easy way to do it is simply to OR the bits you want:

DDR = DDR | 0x06;

The prior operation may be performed using the more common shorthand:

DDR |= 0x06;

Note that the preceding code does not affect any of the other bits so they stay in whatever mode they were

originally. By the way, a set of specific bits (such as the 0x06 above) is often referred to as a bit pattern or

bitmask.

To see if a specific bit is set, simply AND instead of OR. So, to see if the 1st bit of DDR is set for output

mode, you could use something like:

if (DDR & 0x02) // true if set

Clearing bits requires ANDing with a bitmask that has been complemented. In other words, all 1s and 0s

have been reversed in the bit pattern. If, for example, we want to clear the 0th and 4th bits, weôd first

complement the bit pattern 0x11 yielding 0xee. Then we AND:

DDR &= 0xee;

Often, itôs easier to just use the logical complement operator on the original bit pattern and then AND it:

DDR &= (~0x11);

If youôre dealing with a single bit, you can use the left shift operator so you donôt even have to bother

figuring out the bit pattern in hex. To set the 3rd bit and then clear the 4th bit of DDR, you could use the

following:

DDR |= (0x01<<3);

DDR &= ~(0x01<<4);

These operations are so common that they are often invoked using an in-line expansion via a #define .

 4.6 #define

Very often it is desirable to use symbolic constants in place of actual values. For example, youôd probably

prefer to use a symbol such as PI instead of the number 3.14159. You can do this with the #define

preprocessor directive. These are normally found in header files (such as stdio.h or math.h) or at the top

of a module of C source code. You might see something like:

#define PI 3.14159

Once the compiler sees this, every time it comes across the token PI it will replace it with the value

3.14159. This directive uses a simple substitution but you can do many more complicated things than

this. For example, you can also create something that looks like a function:

Embedded Controllers 29

#define parallel((x),(y)) ((x)*(y))/((x)+(y))

The x and y serve as placeholders. Thus, the line

a = parallel(b, c);

gets expanded to:

a = (a*b)/(a+b);

Why do this? Because itôs an in-line expansion or macro. That means that thereôs no function call

overhead and the operation runs faster. At the same time, it reads like a function, so itôs easier for a

programmer to follow. OK, but why all the extra parentheses? The reason is because x and y are

placeholders, and those items might be expressions, not simple variables. If you did it this way you might

get in trouble:

#define parallel(x,y) x*y/(x+y)

What if x is an expression, as in the following example?

a = parallel(2+b,c);

This would expand to:

a = 2+b*c/(2+b+c);

As multiplication is executed before addition, you wind up with 2 being added to the product of b times c

after the division, which is not the same as the sum of 2 and b being multiplied by c , and that quantity

then being divided. By using the extra parentheses, the order of execution is maintained.

Referring back to the bit field operations, here are some useful definitions for what appear to be functions

but which are, in fact, bitwise operations expanded in-line:

#de fine bitRead(value, bit) (((value) >> (bit)) & 0x01)

#define bitSet(value, bit) ((value) |= (1UL << (bit)))

#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))

The 1UL simply means 1 expressed as an unsigned long. Finally, bit could also be defined as a symbol

which leads to some nice looking self-documenting code:

#define LEDBIT 7

// more code here ...

bitSet(DDR, LEDBIT);

#define expansions can get quite tricky because they can have nested references. This means that one

#define may contain within it a symbol which is itself a #define . Following these can be a little

tedious at times but ultimately are worth the effort. We shall look at a few down the road. Remember,

these are done to make day-to-day programming easier, not to obfuscate the code. For now, start with

simple math constant substitutions. They are extremely useful and easy to use. Just keep in the back of

your mind that, with microcontrollers, specific registers and ports are often given symbolic names such as

Embedded Controllers 30

PORTB so that you don't have to remember the precise numeric addresses of them. The norm is to place

these symbolic constants in ALL CAPS.

4.7 Keywords

Here is a list of keywords in the C language:

Figure 4.3, C language keywords

Weôve looked at quite a few of these already. Some that we havenôt you can probably guess the use of. As

stated previously, C is a ñskinnyò language!

4.8 Exercises

1. Write a line of code that will print the statement ñThe result is x voltsò where x is the value given by the

floating point variable output_voltage .

2. Write a line of code to define a constant called RECIP2PI that is equal to 1/(2ˊ).

3. Write the code to determine the number of bytes required for a variable called POWER_SUPPLY.

4. Assume the 8 bit variable X exists. Write the code to set the MSB (most significant bit), leaving all

other bits unchanged.

5. Assume the 8 bit variable Y exists. Write the code to set the LSB (least significant bit), leaving all other

bits unchanged.

6. Assume the 8 bit variable Z exists. Write the code to clear the MSB and LSB, leaving all other bits

unchanged.

7. Assume the 8 bit variable W exists. Write the code to complement each bit (flip 0 to 1 and 1 to 0).

8. If X is 0x04 and Y is 0x09, what are a) X| Y, b) X&Y, c) ~X, d) 0xf1& Y?

9. If X is 0xf0 and Y is 0x11, what are a) X| Y, b) X&Y, c) ~X, d) 0xf1& Y?

auto break case char const

continue do default double else

entry extern float for goto

if int long register return

sizeof short static struct switch

typedef union unsigned volatile while

Embedded Controllers 31

Embedded Controllers 32

5. C Storage Typ es and Scope

5.1 Types

C has several ways of storing or referencing variables. These affect the way variables behave. Some of

the more common ones are: auto, register, and static.

Auto variables are variables declared within functions that are not static or register types. That is, the

auto keyword is the default. Normally, auto variables are created on the applicationôs stack, although C

doesnôt require this. The stack is basically a chunk of memory that is allocated for the applicationôs use

when it is first run. It is a place for temporary storage, with values popped onto and pulled off of the stack

in first-in, last-out order (like a stack of plates). Unless you initialize an auto variable, you have no idea

what its value is when you first use it. Its value happens to be whatever was in that memory location the

previous time it was used. It is important to understand that this includes subsequent calls to a function

(i.e., its prior value is not ñrememberedò the next time you call the function). This is because any

subsequent call to a function does not have to produce the same the memory locations for these variables,

anymore than you always wind up with the same plate every time you go to the cafeteria.

Register variables are similar to auto types in behavior, but instead of using the usual stack method, a

CPU register is used (if available). The exact implementation is CPU and compiler specific. In some case

the register keyword is ignored and a simple auto type is used. CPU registers offer faster access than

normal memory so register variables are used to create faster execution of critical code. Typically this

includes counters or pointers that are incremented inside of loops. A declaration would like something

like this:

register int x;

Static variables are used when you need a variable that maintains its value between function calls. So, if

we need a variable that will ñappear the way we left itò from the last call, we might use something like

this:

static char y;

There is one important difference between auto and static types concerning initialization. If an auto

variable is initialized in a function as so:

char a=1;

Then a is set to 1 each time the function is entered. If you do the same initialization with a static, as in:

static char b= 1;

Then b is set to 1 only on the first call. Subsequent entries into the function would not incur the

initialization. If it did reinitialize, what would be the sense of having a static type? This is explained by

the fact that a static does not usually use the stack method of storage, but rather is placed at a fixed

memory location. Again, C does not require the use of a stack, rather, it is a typical implementation.

Embedded Controllers 33

Two useful but not very common modifiers are volatile and const . A volatile variable is one that

can be accessed or modified by another process or task. This has some very special uses (typically, to

prevent an optimizing compiler from being too aggressive with optimizations-more on this later). The

const modifier is used for declaring constants, that is, variables that should not change value. In some

instances this is preferred over using #define as type checking is now available (but you canôt use the

two interchangeably).

5.2 Scope

Scope has to do with where variables are ñseenò. We have already mentioned the idea of global and local

in previous work but it is time to delve a little deeper. Generally, variables only exist within the block

they are declared. While it is legal to declare variables inside of a conditional or loop block, we normally

declare variables at the very beginning of a function. Consequently, these variables are known within the

function. That is, their scope of reference is within the function. Nothing outside of the function knows

anything about them. Thus, we say that they are local, or perhaps localized, to the function. For example,

consider the two function fragments below:

void func1(void)

{

 int x;

 int y;

 // ... some code here ...

}

void func2(void)

{

 int y;

 int z;

 // ... some other code here ...

}

There is no direct way to access the z variable of func2() from func1() . Likewise, there is no direct

way to access the x variable of func1() from func2() . More interestingly, the y variables of func1()

and func2() are entirely different! They do not refer to the same variable. This sometimes can be

confusing for new programmers but it is essential for large programs. Imagine that you were working

with a team of people on a very large program, perhaps tens of thousands of lines long. If the idea of local

scope did not exist, youôd have to make sure that every single variable in the program had a unique name!

This would create a nightmare of confusion. By using local scope, youôre saying: ñI only need this

variable for a job within this function. As it only needs to exist within this function, its name is only

meaningful within this function.ò

If some form of ñuniversally knownò data item is needed, we can resort to the global. Globals act pretty

much like statics and are usually stored the same way. If you have a program that consists of a single file,

you can declare your globals by listing them at the beginning of the program before (and outside of) any

functions. In this way they will be read by the compiler first and will therefore be ñknownò to all

functions that follow. Do not get in the habit of declaring all variables as global. This is considered a bad

and inefficient coding method. Get into the habit of using locals as the norm and resort to globals only

when called for.

Embedded Controllers 34

If you have a multiple file project, how do you get the functions in the second file to recognize the globals

declared in the first file? In this case, youôll create a header file and use the #include directive. For

example, suppose your project consists of two C source files named foo.c and bar.c.

In foo.c you declare the following global:

int m;

In order for the functions in bar.c to ñseeò m, youôll create a header file, perhaps called foo.h. foo.h will

contain the following:

extern int m;

Meaning that an integer named m has been declared externally (i.e., in another file). At the top of bar.c

youôll add the line:

#include <foo.h>

So, when bar.c is compiled, the compiler will first open up foo.h. It will see that the variable m has been

declared elsewhere and puts it in a ñknown variables listò. It then continues to compile the remainder of

you code. When it comes across m in some function, the compiler ñunderstandsò that this is a variable that

was declared in another file. No problem!

So, you can now see that header files are largely composed of definitions and declarations from other

places, namely external data and function prototypes.

5.4 Exercises

1. Assume a function declares a variable like so: static int x=0; The function increments the

variable and then prints its value. What does the function print out on the tenth call to the function? How

would this change if the static keyword was not used?

2. Consider the following snippet of code:

void doug(void)

{

 int x=0;

 x=x+1;

 printf(ñ%d\ nò, x);

}

void dinsdale(void)

{

 int x=20;

 x=x+1;

 printf(ñ%d\ nò, x);

}

Suppose you call doug() five times in a row and then call dinsdale() five times in a row. What would

the resulting output look like?

Embedded Controllers 35

Embedded Controllers 36

6. C Arrays and Strings

6.1 Introduction

Up to now we havenôt talked much about character strings, that is, variables that contain non-numeric

data such as a personôs name or address. There is no string variable type in C (unlike Python). In C,

strings are nothing more than arrays of characters. Arrays are a simple grouping of like variables in a

sequence, each with the same name and accessed via an index number. They behave similarly to arrays in

most other languages (or lists in Python). C arrays may have one, two, or more dimensions. Here are a

few example declarations:

float results[10]; An array of 10 floats

long int x[20]; An array of 20 longs, or 80 bytes

char y[10][15]; A two-dimension array, 10 by 15 chars each, 150 bytes total

Note the use of square brackets and the use of multiple sets of square brackets for higher dimension

arrays. Also, C arrays are counted from index 0 rather than 1.5 For example, the first item of results[]

is results[0] . The last item is results[9] . There is no such item here as results[10] . That

would constitute an illegal access. You can pre-initialize arrays by listing values within braces, each

separated by a comma:

double a[5] = {1.0, 2.0, 4.7, - 177.0, 6.3e4};

If you leave the index out, you get as many elements as you initialize:

short int b[] = {1, 5, 6, 7}; /* four elements */

If you declare more than you initialize, the remainder are set to zero if the array is global or static (but not

if auto).

short int c[10] = {1, 3, 20}; /* remaining 7 are set to 0 */

If you are dealing with character strings you could enter the ASCII codes for the characters, but this

would be tedious in most cases. C letôs you specify the character in single quotes and it will do the

translation:

char m[20] = {ómô, óyô, ó ô, ódô, óoô, ógô, 0};

(The reason for the trailing 0 will be evident in a moment.) Even easier is to specify the string within

double quotes:

char n[20]={ñBill the catò};

Consider the string n[] above. It contains 12 characters but was declared to hold 20. Why do this? Well,

you may need to copy some other string into this variable at a future time. By declaring a larger value, the

variable can hold a larger string later. At this point you might be wondering how the C library functions

ñknowò to use just a portion of the allocated space at any given time (in this case, just the first 12

5 The reason for this will be apparent when we cover addresses and pointers.

Embedded Controllers 37

characters). This is possible through a simple rule: All strings must be null terminated. That is, the

character after the final character in use must be null, numerically 0. In the case of the direct string

initialization of n[] , the null is automatically added after the final character, t. In the case of the

character-by-character initialization of m[] , we had to do it manually. The null is extremely important.

Functions that manipulate or print strings look for the trailing null in order to determine when their work

is done. Without a null termination, the functions will just churn through memory until they eventually hit

a null, which may cause system violations and even application or operating system crashes. Note that

char my_pet[] = {ñfidoò};

actually declares five characters, not four (four letters plus the terminating null). As C counts from index

0, this declaration is equivalent to:

my_pet[0]= ófô;

my_pet[1]= óiô;

my_pet[2]= ódô;

my_pet[3]= óoô;

my_pet[4]= 0;

The trailing null may also be written as ó\ 0ô. It is important to note that without the backslash, this has

an entirely different meaning! ó\ 0ô means null, but ó0ômeans the numeral 0.

6.2 String Manipulation

 A confusing aspect of C strings for beginners (especially those coming from BASIC or even Python) is

how to manipulate them. That is, how do you copy one string to another, compare strings, extract a

substring, and so forth? As strings are really arrays, you canôt assign one to the other as in a[] = b[];

Instead, we rely on a series of string functions found in the string library. To use these functions, you need

to link your code with the string library and use #include <string.h> at the start of your code. To

copy one string to another, use strcpy() . The template is:

strcpy(d estination, source);

So, if you wanted to copy the contents of my_pet[] into n[] , you could write:

strcpy(&n[0], &my_pet[0]);

If youôre awake at this point, you might ask ñWhatôs with the ampersand?ò Good question! What the

string copy function needs are the starting addresses of the two arrays. In essence, all it does is copy a

character at a time from the source to the destination. When it hits the trailing null itôs done. Weôve

already seen the ñaddress ofò (&) operator earlier when we looked at sc anf() . So, all weôre saying here

is ñFor the source, start at the address of the first character of my_pet[] , and for the destination, start at

the first character of n[] .ò This can be a little cumbersome, so C offers a shortcut. You can think of & and

[] as sort of canceling each other out. Weôd normally write:

strcpy(n, my_pet);

Note that it is perfectly acceptable to use an index other than zero if you need to copy over just a chunk of

the string. You could start copying from index 2 if youôd like, and just get ñdoò instead of ñfidoò:

Embedded Controllers 38

strcpy(n, &my_pet[2]);

This can also be shortcut by using:

strcpy(n, my_pet+2);

that is, donôt start at the address of the first element of my_pet[] , start 2 characters later. Weôll look at

this sort of manipulation much closer when we examine addresses and pointers.

What happens if the source string has more characters than the destination string was allocated to? For

example, what if you did this?

strcpy(my_pet, n);

This results in a memory overwrite that can accidentally destroy other variables or functions. Very bad!

Your program may crash, and in some cases, your operating system my crash. To protect against this, you

can use strncpy() . This places a limit on the number of characters copied by adding a third argument.

As the destination only has space for 5 characters, youôd use:

strncpy(my_pet, n, 5);

This function will stop at 5 characters. Unfortunately, it wonôt automatically null terminate the string if

the limit is reached. To be safe, youôd need to add the following line:

my_pet[4] = 0; /* force null termination */

Remember, as C counts from 0, index 4 is the fifth (and final) element. There are many functions

available to manipulate strings as well as individual characters. Here is a short list:

strcmp() Compares two strings (alphabetically)

strcmpi() As above, but case insensitive

strncmp() Compares two strings with max length

strncat() Concatenate two strings with max length

strlen() Find length of string (count of chars before null)

Figure 6.1, string functions

The following work on single characters. Again this is just a sampling to give you an idea of whatôs out

there. Use #include <ctype.h>

isupper() Determines if character is upper case

isalpha() Determines if character is alphabetic (not numeral, punctuation, etc.)

tolower() Turns character into lower case version

Figure 6.2, character functions

Embedded Controllers 39

If you donôt have library documentation, it can be very instructive to simply open various header files and

look at the function prototypes to see whatôs available. Whatever you do though, donôt edit these files!

Finally, if you need to convert numeric strings into integer or floating point values, use the functions

atoi() , atol() and atof() . (ASCII to int or long int in stdlib.h, ASCII to float in math.h).

6.3 Exercises

1. Write the code to declare an array of 12 single precision real numbers.

2. Write the code to declare an array of 15 eight bit signed integers.

3. Assume that an array of 100 double precision real numbers has been declared and is named points .

Write the code to print out the first item of points . Also, write the code to set the last item of points to

0.0.

4. Declare a string called mammal and initialize it to the word woodchuck.

5. Do you see any potential problems with this snippet of initialization code? If so, explain the issues and

how they might be corrected.

char bird;

bird[0]=ôsô

bird[1]=ôwô

bird[2]=ôaô

bird[3]=ôlô

bird[4]=ôlô

bird[5]=ôoô

bird[6]=ôwô

Embedded Controllers 40

7. C Conditionals and Looping

7.1 Conditional s

C uses a fairly standard if/else construct for basic conditionals. They may be nested and each portion may

consist of several statements. The condition itself may have multiple elements and be formed in either

positive or negative logic. The basic construct is:

if(test condition(s). . .)

{

 // ...do stuff...

}

The else portion is optional and looks like:

if(test condition(s)..)

{

 // ...do stuff...

}

else

{

 // ...do other stuff...

}

If there is only a single statement in the block (i.e., between the braces), the braces may be removed if

desired:

if(test condition(s)..)

 // ...single statement...

else

 // ...do other statement...

The test condition may check for numerous possibilities. The operators are:

== equality

!= inequality

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Figure 7.1, relational operators

It is very important to note that equality uses a double equal sign. A single equal sign is an assignment

operation. Donôt think ñequalsò, think ñsame asò, with one symbol for each word. You may also use

Boolean (logic) operators, as shown in Figure 7.2.

Embedded Controllers 41

|| OR

&& AND

! NOT

Figure 7.2, logical operators

Note that the logical operators do not behave the same as the similarly named bitwise operators. For

example, a logical AND returns TRUE if its two arguments are non-zero, not necessarily the same bits.

That is 1 & 2 yields 0, but 1 && 2 yields TRUE. TRUE is taken to be any non-zero value. Any

variable or expression that evaluates to a value other than zero is logically TRUE. If the result is zero,

then it is logically FALSE. Time for some examples. The conditional is written as a fragment with an

explanation following:

if(a==6)

 /* taken only if the variable a is a 6 */

if(b!=7)

 /* take n as long a s the variable b isnôt 7 */

if((a==6) && (b!=7))

 /* taken as long as a is 6 and b is something other than 7 */

if((a==6) || (b!=7))

 /* taken as long as a is 6 or b is something other than 7 */

if(a==0)

 /* taken if a is zero */

if(!a)

 /* ano ther way of saying taken if a is zero */

if(a!=0)

 /* taken if a is not zero */

if(a)

 /* another way of saying taken if a is not zero */

How you word something is up to you. The following two code fragments are equivalent:

if(a==b)

 do_x();

else

 do_y();

if(a!=b)

 do_y();

else

 do_x();

It is very common for new programmers to use = when they want ==. This can have disastrous results.

Consider the following code fragment:

Embedded Controllers 42

if(a=b)

What does this do? At first glance, you might think it tests to see if a and b are the same. It does nothing

of the kind! Instead, it assigns the value of b to a and then checks to see if that value is non-zero. In other

words, it does this:

a=b;

if(a)

A trick to help you with this, at least with constants, is to reverse the normal order. Instead of writing

if(a==6) , use if(6==a) . This way, if you accidentally use a single equal sign, the compiler will

cough up a syntax error.

7.2 Nesting

If a multiple condition wonôt cut it, you can nest if/else tests. Nesting conditionals is easy:

if(test condition(s)..)

{

 if(other tests..)

 {

 }

 else

 {

 }

}

else

{

 if(still other tests..)

 {

 }

 else

 {

 }

}

You can go many levels deep if you desire. Note that C, unlike Python, doesnôt require the indenting

shown, but it is expected formatting. For selection of a single value out of a list, you can use the

switch/case construct. The template looks like:

switch(test_variable)

{

 case value_1:

 // ...do stuff...

 break;

 case value_2:

 // ...do other stuff...

 break;

 default:

 // ...do stuff for a value not in the list...

 break;

}

Embedded Controllers 43

The default section is optional. Also, it does not have to be the final item in the list. If a break is left

out, the code will simply fall through to the next case, otherwise code execution jumps to the closing

brace. Also, cases can be stacked together. The action statements for each case may include any legal

statements including assignments, function calls, if/else , other switch/case , and so on. Note that

you cannot check for ranges, nor can the cases be expressions. The cases must be discrete values. The

following example shows all of these. The action statements are replaced with simple comments.

switch(x)

{

 case 1:

 /* This code performed only if x is 1, then jump to cl osing

 brace */

 break;

 case 2:

 /* This code performed only if x is 2, then jump to closing

 brace */

 break;

 case 3:

 /* This code performed only if x is 3, but continue to next

 case (no break statement) */

 case 4:

 case 5:

 /* This code pe rformed only if x is 3, 4, or 5, */

 break;

 default:

 /* this code performed only if x is not any of 1,2,3,4, or

 5, then jump to closing brace (redundant here) */

 break;

}

Sometimes it is very handy to replace the numeric constants with #define values. For example, you

might be choosing from a menu of different circuits. You would create some #define values for each at

the start of the file (or in a header file) as so:

#define VOLTAGE_DIVIDER 1

#define EMITTER_FEEDBACK 2

#define COLLECTOR_FEEDB ACK 3

/* etc... */

You would then write a much more legible switch/case like so:

switch(bias_choice)

{

 case VOLTAGE_DIVIDER:

 /* do volt div stuff */

 break;

 case EMITTER_FEEDBACK:

 /* do emit fdbk stuff */

 break;

 /* and so on. . . */

}

Embedded Controllers 44

7.3 Loo ping

There are three looping constructs in C. They are while() , do- while() , and for() . do- while() is

really just a while() with the loop continuation test at the end instead of the beginning. Therefore, you

always get at least one iteration. The continuation test follows the same rules as the if() construct. Here

are the while() and do- while() templates:

while(test condition(s). . .)

{

 //. ..statements to iterate. . .

}

do {

 // ..statements to iterate. . .

} while(test condition(s). . .)

Here are some examples:

while(a<10)

{

 /* Perhaps a is incremented in here.

 If a starts off at 10 or more, this loop never executes */

}

do {

 /* Perhaps a is incremented in here.

 If a starts off at 10 or more, this loop executes once */

} while(a<10)

while(a <10 && b)

{

 /* This loop continues until a is 10 or more, or b is zero.

 Either condition will halt the loop. Variable a must be

 less than 10 and b must be non - zero for the loop to

 continue */

}

Usually, loops use some form of counter. The obvious way to implement a counter is with a statement

like:

a=a+1; /* add one to the current value of a */

C has increment and decrement operators, ++ and -- , so you can say things like:

a++; /* add one to the current value of a */

a-- ; /* subtract one from the current value of a */

C also has a shortcut mode for most operations. Here are two examples:

a+=1; /* equivalent to a=a+1; or a++; */

a*=2; /* equivalent to a=a*2; */

Embedded Controllers 45

You will see all three forms of increment in example and production code, although the increment and

decrement operators are generally preferred.

The for() construct is generally preferred over the while() if a specific number of iterations are

known. The template is:

for(initialization(s); termination test(s); increment(s))

{

 ..statements to iterate..

}

Here is an example using the variable a as a counter that starts at 0 and proceeds to 9 by adding one each

time. The loop iterates 10 times.

for(a=0; a<10; a++)

{

 /* stuff to do ten times */

}

The following example is similar, but adds 2 at each loop, thus iterating 5 times.

for(a=0; a<10; a+=2)

{

 /* stuff to do five times */

}

The next example uses multiples. Note the use of commas.

for(a=0, b=1; a<10; a++, b*=3)

{

 /* stuff to do ten times */

}

In this case two variables are initialized. Also, at each loop completion, a is incremented by 1 and b is

multiplied by 3. Note that b is not used in the termination section, although it could be.

If the iterated block within the braces consists of only a single statement, the braces may be left out (just

like in the if/else construct). Loops may be nested and contain any legal C statements including

assignments, conditionals, function calls and the like. They may also be terminated early through the use

of the break statement. As in the switch/case construct, the break command redirects program flow to

the closing brace. Here is an example:

for(a=0, b=2; a<7; a++)

{

 while(b<a*10)

 b*=2;

 if(b > 50)

 break;

}

Embedded Controllers 46

Note that the if() is not part of the while() . This is visually reinforced by the use of indents and

spacing, but thatôs not what makes it so. The code would behave the same even if it was entered like so:

for(a=0, b=2; a<7; a++){ while(b<a*10) b*=2; if(b>50) break;}

Obviously, the former style is much easier to read than the later. It is strongly recommended that you

follow the first style when you write code.

OK, what does the code fragment do? First, it sets a to 0 and b to 2. Then, the while() checks to see if b

is less than 10 times a. 2 is not less than 0, so the while() doesnôt iterate. Next, the if() checks to see

if b is more than 50. Itôs not, so the break isnôt executed. That concludes the first iteration. For the

second iteration, a is incremented to 1 and checked to see if itôs still less than 7. It is, so the loop

continues and enters the while() . b is smaller than 10 times a (2<10), so b is doubled to 4. This is still

smaller so itôs doubled again to 4, and again to 8. Finally, it is doubled to 16. It is now larger than 10

times a so the while() loop exits. The if() isnôt true as 16 is not larger than 50 so the break isnôt

taken. We wind up finishing iteration two by incrementing a to 2. The while() loop starts because b

(16) is less than 10 times a (now 20). The loop will only execute once, leaving b at 32. This is still less

than 50, so the break is ignored. The for() closes by incrementing a to 3. On the next iteration both

the while() and if() are ignored as b is less than 10 times a as well less than 50. All that happens as

that a is incremented to 4. Now that a is 4, the while() starts again (32<40). b is doubled to 64. Thatôs

greater than 10 times a, so the while() exits. b is now greater than 50 so the if() is taken. This results

in executing the break statement that directs program flow to the closing brace of the for() loop.

Execution picks up at the line following the closing brace and we are all done with the for() loop (no, a

never gets to 7). This example is admittedly a little tricky to follow and not necessarily the best coding

practice, but it does illustrate how the various parts operate.

7.4 While or For?

So, which do you use, a while() or a for() ? You can make simple loops with either of them but for()

loops are handy in that the initialization, termination, and increment are all in one spot. With while()

loops, you only specify the termination, so you must remember to write the variable initializations before

the loop as well as the increments within the loop. If you forget either of these your loop will behave

erratically. It may fail to terminate altogether, resulting in an infinite loop, as shown below.

a=0;

while(a<10)

{

 printf(ñhello\ nò);

}

This code fragment doesnôt print the word hello ten times, it prints hello forever (or better to say until you

forcibly terminate the program)! Although a was initialized and tested, it was never incremented. You

need an a++; (or similar) within that loop.

Embedded Controllers 47

7.5 Exercises

1. Write the code to examine the value of the variable X. If itôs less than zero, the message negative value

should be printed.

2. Write the code to examine the value of the variable X. If itôs equal to zero, the message zero value

should be printed.

3. Write the code to compare the values of the variables X and Y. The greater value should be printed.

4. Write the code to examine the values of the variables X and Y. If both X and Y are greater than zero,

increment X by one.

5. Write the code necessary to print the message Error! six times but without using six sequential

printf() calls.

6. Write the code required to control a loop so that it continues so long as the variable K is less than 50.

7. Write the code needed to cycle the variable R from 100 to 200 in steps of 5 (i.e., 100, 105, 110, etc.).

8. Explain the practical difference between a while loop and a do- while loop.

Embedded Controllers 48

8. C Pointers and Addresses

8.1 Introduction

As you may recall from earlier course work, every byte of memory in a computer system is identified by a

unique address. C works directly with addresses and this is one reason why it can be used to create

efficient and powerful code. You can obtain the address of virtually any variable or data item using the

ñaddress ofò operator, &. One exception to this is the register class variable. This is because CPUôs

registers donôt have an address like normal memory. Also, as functions are just memory locations filled

with microprocessor/microcontroller op-codes, C also makes it possible to obtain the starting address of

functions.

8.2 Using Addresses and Pointers

If we declare a variable as so:

char a;

then referencing a will get us the value stored in a, as in the code b=a; . Using the address of operator,

as in &a, will obtain the memory location of a, not aôs value or contents. This is the sort of thing we used

with scanf() and strcpy() . It is possible to declare variables that are designed to hold these addresses.

They are called pointers. To declare a pointer, you preface the variable with an asterisk like so:

char *pc;

The variable pc is not a char , it is a pointer to a char . That is, its contents are the address of a char
variable. The content of any pointer is an address. This is a very important point. Consider the following

code fragments based on the declarations above:

pc = a; /* unhappy */

pc = &a; /* just fine */

The first line makes no sense as we are trying to assign apples to oranges, so to speak. The second line

makes perfect sense as both pc and &a are the same sort of thing, namely the address of a variable that

holds a char . What if we want pointers to other kinds of things? No problem, just follow the examples

below:

float *pf; /* pointer to a float */

long int *pl; /* pointer to a long int */

double *pd, *p2; /* two pointers to doubles */

short int *ps, i; /* ps is a pointer to a short int */

 /* i is just a short int */

As mentioned, all pointers contain addresses. Therefore, no matter what the pointer points to, all

pointers are the same size (same number of bytes). In most modern systems, pointers are either 32 bits

(4 bytes) or 64 bits (8 bytes) although some small controllers use 16 bit addressing. When in doubt, you

can check your code with sizeof() . If all pointers are the same size, then why do we declare different

Embedded Controllers 49

types of pointers? There are two reasons. First, this helps with type checking. Functions that take pointers

as arguments or that return pointers will be using certain forms of data. You wouldnôt want to accidentally

send off a pointer to a float when the function expects the address of a short int for example.

Second, by specifying the type of thing the pointer points to, we can rely on the compiler to generate

proper pointer math (more on this in a moment).

8.3 Pointer Dereferencing

Suppose you have the following code fragment:

char *pc, c, b;

c = 1;

pc = &c;

We have declared two variables, a char and a pointer to a char . We then set the contents of the char to

1, and set the contents of the pointer to the address of the char . We donôt really need to know what this

address is, but for the sake of argument, letôs say that c is located at memory address 2000 while pc is

located at memory address 3000. If we were to search the computerôs memory, at address 2000 we would

find the number 1. At address 3000, we would find the number 2000, that is, the address of the char

variable. In a typical system, this value could span 32 bits or 4 bytes. In other words, the memory used by

pc is addresses 3000, 3001, 3002, and 3003. Conversely, in a 16 bit system, pc would only span 3000

and 3001 (half as many bytes, but far few possible addresses).

As the contents of (i.e., value of) pc tell us where a char resides, we can get to that location, and thus the

value of the char variable c . To do this, we dereference the pointer with an asterisk. We could say:

b = *pc;

Read this as ñb gets the value at the address given by pcò. That is, pc doesnôt give us the value, rather, it

tells us where to go to get the value. Itôs as if you went to your professorôs office and asked for your

grade, and instead he hands you a piece of paper that reads ñI will e-mail it to youò. The paper doesnôt

indicate your grade, but it shows you where to find it. This might sound unduly complicated at first but it

turns out to have myriad uses. By the way, in this example the value of b will be 1 because pc points to a,

which was assigned the value 1 at the start. That is, b gets the value at the address pc points to, which is

simply a.

8.4 Pointer Math

One of the really neat things about pointers is pointer math. Returning to our example of pc at address

3000, if you increment pc , as in pc++; youôll get 3001. No surprise, right? If, on the other hand, you had

a pointer to a double , pd, at address 3000 and you incremented it, you wouldnôt wind up with 3001. In

fact, youôd wind up with 3008. Why? This comes down to how large the thing is that weôre pointing at.

double s are 8 bytes each. If you had a bunch of them, as in an array, incrementing the pointer would get

you the next item in the array. This is extremely useful. Note that adding and subtracting to/from pointers

makes perfect sense, but multiplying, dividing, and higher manipulations generally make no sense and are

to be avoided.

Embedded Controllers 50

8.5 Pointers and Arrays

We very often use pointers with arrays. One example is the use of strings. We noted this in earlier work.

Recall that the ñaddress ofò and array index ñcancel each otherò so that the following are equivalent:

&somestring[0] somestring

Letôs look at an example of how you might use pointers instead of normal array indexing. We shall write

our own version of strcpy() to copy one string to another. The function takes two arguments, the

address of a source string and the address of a destination string. We will copy over a character at a time

until we come to the null termination. First, the normal array index way:

void strc py1(char dest[], char source[])

{

 int i=0; /* index variable, init to first char */

 while(source[i] != 0) /* if itôs not null...*/

 {

 dest[i] = source[i]; /* copy the char */

 i++; /* increment index */

 }

 dest[i] = 0; /* null terminate */

}

Looks pretty straight forward, right? There are some minor improvements you can make such as changing

the loop to while(source[i]) , but thatôs not a big deal. Now in contrast, letôs write the same thing

using pointers.

void strcpy2(char *dest, c har *source)

{

 while(*dest++ = *source++);

}

Thatôs it. Hereôs how it works. dest and source are the starting addresses of the strings. If you say:

*dest = *source;

then what happens is that the value that source points to gets copied to the address referred to by dest .

That copies one character. Now, to this we add the post increment operator ++:

*dest++ = *source++;

This line copies the first character as above and then increments each pointer. Thus, each pointer contains

the address of the next character in the array (youôve got to love that pointer math, this will work with any

sized datum). By placing this code within the while() loop, if the content (i.e., the character copied) is

non-zero, the loop will continue. The loop wonôt stop until the terminating null has been copied. As you

can imagine, the underlying machine code for strcpy2() will be much simpler, more compact, and

faster to execute than that of strcpy1() . As was said at the outset of the course, you can do a lot in C

with just a little code!

Embedded Controllers 51

8.6 Exercises

1. Declare a pointer to a floating point variable, naming it fptr .

2. Declare a pointer to a signed character variable, naming it cptr .

3. Consider the following snippet of code:

unsigned char c, *p;

Explain the difference between c and p.

4. Consider the following snippet of code:

unsigned char *p;

double *p2;

Assume that the value of p is currently 1000 and the value of p2 is 2000. What are their values after the

following piece of code is executed?

p++;

p2++;

5. Explain the difference between the * and & operators in relation to pointers.

6. Consider the line of code below.

a = b* c;

Is the * operator a pointer dereference or a multiply? How do we know?

7. Consider the line of code below.

a = b** c;

What do you think this line does? How might you alter this line to mark the intent more clearly and less

prone to error or misinterpretation?

8. Explain the difference between the two lines of code below.

a*=b;

a=*b;

Embedded Controllers 52

9. C Look-up Tables

9.1 Introduction

Sometimes we use tools to make things without thinking about how the tools themselves are made. In the

world of software, sometimes how things are done (the implementation) can have a huge impact on

performance. It turns out that sometimes you can trade performance in one area for another. For example,

a certain technique might be very memory efficient but rather slow, or vice versa. Weôre going to take a

look at a common programming technique that is very fast. Sometimes it can require a lot of memory,

sometimes not. Itôs called a look-up table.

9.2 òYes, Iõd Like a Table for 360, Pleaseó

Consider the common C trig function, sin() . Not much to it, really. You pass it an argument and you get

back the sine of the argument. But how is it implemented? It could be implemented as a Taylor Series

expansion that requires several multiplies and adds. A single sine computation wonôt take long but what if

you need to do millions of them? All of those multiples and adds add up, so to speak. Consider the

following problem: You need to get the sine of an angle specified to the nearest degree, and fast.

Basically, you have 360 possible answers (0 degrees through 359 degrees)6. Now suppose you create an

array of 360 values which consists of the sine of each angle in one degree increments, starting at 0

degrees and working up to 359 degrees. It might look something like this:

double sine_table[] = { 0.0, 0.01745, 0.034899, 0.05234,

 /* and so on to the last entry */ - 0.01745 };

You can now ñcomputeò the sine like so, given the argument angle :

answer = sine_table[angle];

Because of the duality of arrays and pointers, you can also write this as:

answer = *(sine_table + angle);

Without an optimizing compiler, the second form will probably generate more efficient machine code. In

either case, this is very fast because itôs nothing more than reading from a memory location with an offset.

The result is just one add plus the access instead of a dozen multiply/adds. It does come at the cost of 360

double floats, which, at eight bytes each, is nearly 3k of memory. By recognizing that the sine function

has quarter wave symmetry, you can add a little code to check for the quadrant and reduce the table to just

90 entries. Also, float s might have sufficient precision for the application which will cut the memory

requirements in half again when compared to double s.

6 Outside those bounds you can always perform some minor integer math to get within the bounds (e.g., if the angle

is 370, just mod by 360 to get the remainder of 10 degrees, effectively the ñwrap aroundò).

Embedded Controllers 53

To make the above just a little spiffier, you can always make it look like a function via a #define as

follows:

#define fast_sin(a) (*(sine_table+(a)))

Of course, a down side to this operation is that it only deals with an integer argument and is only accurate

to a single degree. You can alter the definition to allow a floating point argument and round it to the

nearest whole degree as follows:

#define fast_sin(a) (*(sine_table +(int)((a)+0.5)))

You could also turn this into a true function and add code to interpolate between adjacent whole degree

entries for a more accurate result. At some point the extra refinements will slow the function to the point

where a more direct computation becomes competitive.

9.3 Waving Quickly

So whatôs all this business about needing to do this sort of thing very fast? One application might be the

direct digital synthesis of arbitrary waveforms. The idea is to create a waveform of an arbitrary shape, not

just the usual sines, squares and triangles. This is possible but can be tricky to do with analog oscillator

techniques coupled with waveshaping circuits. Instead, consider creating a large table of integer values.

Typically, the table size would be a nice power of two, like 256. Each entry in the table would be the

digitized value of the desired waveform. A simple ramp might look like this:

unsigned short int ramp_table[] = { 0, 1, 2, 3, /* and so on */};

A more complicated wave might look like this:

unsigned short int squiggly_table[] = { 0, 21, 15, 33, /* etc */};

These values could then be sent sequentially to a digital-to-analog converter (DAC) to create the desired

waveform. Once we get to the end of the table, we simply loop back to the start to make the next cycle.

With a 256 entry table, we can use an unsigned char as the table index and once it reaches 255,

incrementing it will cause it to roll over back to 0, automatically. The post increment operator is ideal for

this. For the code below, assume PORT is the memory location of the DAC we are writing to.

unsigned char i = 0;

// loop forever

while (1)

{

 PORT = ramp_table[i++];

 // now wait between each value, dependent on sample rate

 delay();

}

Embedded Controllers 54

9.4 Error Correction via Table Translation

Another possible use for a look-up table is for error correction. Again, letôs limit this to a nice 256 entry

table. Suppose you are reading a sensor with an 8 bit (256 level) analog-to-digital converter (ADC).

Maybe this is a temperature sensor and at the extremes of the temperature range it tends to go out of

calibration. You can use the input value from the sensor (perhaps appropriately scaled and then turned

into an integer) as the index into a 256 element table that contains the corrected values.

As an example, to keep it simple letôs say the sensor reads a temperature ranging from 0ÜC to 250ÜC. You

calibrate it by placing it in a known 150ºC oven and the sensor reads 145º instead of the ideal 150º. You

repeat this process at several other temperatures and discover that it reads 166Ü when itôs really 170Ü, 188Ü

when itôs really 195Ü, and so on. So you create a table where the 145th entry is 150, the 166th entry is 170,

the 188th entry is 195, etc. Now use the sensor value as the index into the array. The value you access is

the corrected result. The table effectively translates your input into a calibrated output.

corrected_temp = calibration_array[sensor_value];

This is a very fast process and as accurate as your calibration measurements. As long as the sensor data is

repeatable (e.g., it always reads 145ºC in a 150ºC oven), youôll get good results.

Embedded Controllers 55

Embedded Controllers 56

10. C Structures

10.1 Introduction

C allows compound data called structures, or struct for short. The idea is to use a variety of the basic

data types such as float or int to describe some sort of object. Structures may contain several of each

type along with pointers, arrays, and even other structures. There are many uses for such a construct and

structures are very common in production C code.

As an example, we may wish to describe an electronic component such as a transistor. What sort of things

do we need? There are several performance parameters that may be used such as current gain, breakdown

voltage and maximum power dissipation. All of these items may be represented as double variables.

There will be a model number. This will probably be a string as it may contain letters (such as

ñ2N3904ò). There will need to be a manufacturerôs code. This could be an int . A real world device will

have many more parameters than these five, but these will suffice for our purposes. If you only have one

transistor to deal with, five separate variables is not a big deal to keep track of. On the other hand, what if

you have a great number of parts as in a database? Perhaps there are 1000 devices. Creating 5000 separate

variables and keeping them straight presents a bit of a challenge. It would be nice if we could combine the

five items together into a ñsuper variableò. Then, all we have to worry about is creating 1000 of them for

the database (perhaps with an array, although there are other techniques). There shouldnôt be a problem of

getting the current gain of one device confused with that of another. This is where structures come in.

Below is an example of how we would define this transistor structure and associated instances.

struct transistor {

 double currentgain;

 double breakdown;

 double maxpower;

 short int manufacturer;

 char model[20];

};

struct transistor my_transistor;

struct transi stor *ptransistor;

We have defined a structure of type transistor . We have also declared an instance of a struct

transistor called my_transistor , along with a pointer to a struct transistor called

ptransistor . The five elements are referred to as the fields of the structure (e.g., the currentgain

field). Note that this structure contains an array of characters for the model name/number. The model

cannot exceed 19 characters (19 plus terminating null yields 20 declared). It is unlikely that weôll ever

have model name/number this long, but if by chance we do, we will have to truncate it.

To set or retrieve values from an instance, we use a period to separate the structure name from the field of

interest. Here are some examples:

my_transistor.currentgain = 200.0;

my_transistor.maxpower = 50.0;

my_transistor.manufacturer = 23;

Embedded Controllers 57

In the last assignment, it may be better to use a #define rather than a hard number. For example, place

the following definition in a header file and then use the assignment below:

#define MOTOROLA 23

my_transistor.manufacturer = MOTOROLA;

To set the model field, you could do something like this:

strcpy(my_transistor.model, ñ2N3904ò);

Remember, strcpy() needs addresses. The double quote string literal produces this automatically. For

the model field, we are using the shortcut described in earlier work. The line above is equivalent to:

strcpy(&(my_transistor.model[0]), ñ2N3904ò);

If you need to use a field in a computation or comparison, the access is unchanged:

if(my_transis tor.breakdown > 75.0)

 printf(ñBreakdown voltage is at least 75 volts!\ nò);

A good question at this point is whether of not the declared order of the fields makes any difference. This

depends on the compiler and target hardware. In some processors, multiple-byte variables such as long

and short integers, floats and pointers must be word aligned. For example, a short int may be required to

start on an even address or a float might be required to start on an address divisible by four. In such a

system, a structure declared with the order of char, float, char, int will need pad bytes between some fields

to ensure alignment and will take up more memory space than if the structure was organized as float, int,

char, char. This is of particular importance if large arrays of structures are to be used.

10.2 Pointers and Structures

It is generally not a good practice to send entire structures to functions as arguments. The reason is

because you wind up copying a lot of data. The transistor structure above contains three double s at 8

bytes each, a short int at 2 bytes, and 20 bytes for the char array, leaving a total of 46 bytes of

memory that need to be copied if we pass this to a function. It would be much more efficient if we simply

passed the starting address of the structure to the function. That is, we tell the function where to find the

structure by using a pointer (this is called ñpassing by referenceò versus the more familiar ñpassing by

valueò). This is why we declared ptransistor . We initialize it like so:

ptransistor = &my_transistor;

To access the various fields, we can longer use the period because we no longer have a struct

transistor ; we have a pointer to one. For pointers, we access the fields via the pointer token, which is

made up of a dash followed by a greater than sign: - > Thus, we might say:

ptransistor - >currentgain = 200.0;

strcpy(ptransistor ->model, ñ2N3904ò);

Embedded Controllers 58

Below is a function that simply prints out the values of the various fields.

void print_transistor(struct transistor *pt)

{

 printf(ñFor model: %s\ nò, pt- >model);

 printf(ñCurrent gain is %lf\ nò, pt- >currentgain);

 printf(ñBreakdown voltage is %lf\ nò, pt- >breakdown);

 printf(ñMaximum power is %lf\ nò, pt- >maxpower);

}

/* note use of %s for string and %lf for ñlong floatò i.e., double */

We pass the function a pointer to a transistor structure like so:

print_transistor(&my_transistor);

/* we could also use print_transistor(ptransistor);

 if we initialized it as above */

10.3 Structures, Arrays, and So On

We have seen that it is possible to have arrays within structures. It is also possible to have structures

within structures and pointers within structures. Here are some examples:

/* The structure definitions */

struct foo {

 float x;

 float y;

};

struct bar {

 double *pd;

 struct foo littlefoo;

 struct foo *pf;

};

/* The variable declarations */

struct foo my_foo;

struct bar my_bar;

struct bar *pbar = &my_bar;

double z=1.0;

The bar structure contains a pointer to a double , a pointer to struct foo , and a struct foo . We

would access them as follows:

my_bar.pd = &z; /* pd isnôt a double but the address of one, hence & */

my_bar.littlefoo.x = 2.2;

pbar - >littlefoo.y = 3.3;

pbar - >pf = &my_foo;

pbar - >pf - >x = 4.4;

Note that if you didnôt say pbar - >pf = &my_foo; first, then pbar - >pf - >x = 4.4; would be very

evil! Without assigning my_foo to pf , this pointer would contain some random number. The second

statement would then use that number as the starting address of struct foo , and write the number 4.4

Embedded Controllers 59

where the x field should be. As itôs highly unlikely that this random number is the starting address of a

struct foo , the number 4.4 overwrites something else. That might mean other data or even code gets

destroyed. Your program behaves erratically or crashes.

Pointer Rule Number One: Never dereference7 an uninitialized pointer!

Only bad, evil things will happen and you will become a very sad programmer.

At the beginning of the transistor example we noted that we might want to create a bunch of transistors.

One possibility is to use an array. There are other ways, as we shall see. Hereôs how youôd declare an

array of 1000 transistor structures, given the definition above:

struct transistor transistors[1000];

You would access the field as follows:

transistors[0].currentga in = 200.0; /* set 1st deviceôs gain to 200 */

transistors[2].breakdown = 85.0; /* set 3rd deviceôs breakdown to 85 */

Finally, it is also possible to create an array of pointers to transistor structures:

struct transistor *ptarray[1000];

Note that we do not have 1000 transistor structures, but rather 1000 pointers. Each of these would need to

point to an appropriate transistor structure. Assuming you had declared one named my_transistor as

we did earlier, you could write:

ptarray[0] = &my_transistor;

And you could access fields like so:

ptarray[0] - >maxpower = 25.0;

Although this may look a little odd at first, this sort of construct does have some good uses in more

advanced applications. To stretch your mind just a teensy bit further, C makes it possible to create

something like an array of pointers to structures which contain a structure which in turn contains an array

of pointers to still other structures. Read that again, imagine what that might look like as a memory map,

and then write some possible definitions/declarations. If you can do that, youôve pretty well mastered the

idea.

10.4 Exercises

1. Declare a structure of type Quest called Grail that contains a float called X, a long integer called Y

and an unsigned character called Z.

2. Given the structure of problem one, will the order of the three fields have any effect or importance?

How might we determine if it does?

7 i.e., try to access the fields of.

