Embedded Controllers

| 2E

INO

C and Ardu

Using

NGy

2PNy,

QM
R

SR

T
R

TR

SRR RINR
LA

3 W O
A A Dy
N
RN

W

SN
A A

JamesM. Hore

Embedded Controllers

Embedded Controllers

Using C and Arduino

by

James M. Fiore

Version 2.0.2, 31 August 2016

Embedded Controllers

This Embedded Controllers Using C and Arduino, by James M. Fioreis copyrighted under the terms
of a Creative Commons license:

This work is freelyredistributable for nolwommercial use, shasadike with attribution

Published by James M. Fiore d&sidents

ARDUINO
OPEN-SOURCE
COMMUNITY

For more information or feedback, contact:

James Fiore, Professor

Electrical Engineering Technology
Mohawk Valley Community College
1101 Sherman Drive

Utica, NY 13501

jfiore@mvcc.edu
www.mvcc.edu/[fore

Cover art by the author

4 Embedded Controllers

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://www.dissidents.com/
http://blog.arduino.cc/
mailto:jfiore@mvcc.edu
www.mvcc.edu/jfiore

Introduction

This text isdesigned tantroduceand expand upon material related to the C programming language and
embedded controllers, and specifically, the Arduino development system and associated Atmel ATmega
microcontollers. It is intended to fit the time constraints of a typical 3 to 4 credit hour course for

electrical engineering technology and computer engineering technology programs, although it could also
fit the needs of a hardwatgiented course in computerieigce. As such, the text does not attempt to
covereveryaspecbdf the C language, the Arduino system or Atmel AVR microcontrollérs.first

section deals with the C language itself. It is assumed that the student is a relative newcomer to the C
languagebut has some experience with another high level languagexdomde, Python. This means
concepts such as conditionals and iteration are already familiar and the student can get up and running
fairly quickly. From there, the Arduino development environtrie examined.

Unlike the myriad Arduindoooks now available, this tedbesnot simply rely on the Arduino libraries.

As convenient as the libraries may be, there are other, sometimes far more efficient, ways of
programning the boards. Many ofthechteg exami ne | i brary source code t
hoodd. This more generic approach means it wild.|l b
development systems instead of being tightly tied to one platform.

All Atmel schematics and tiatables are derived from the latest version (October, 2014) of the Atmel
328Pdocumentation which may be foundhdtp://www.atmel.com/devices/ATMEGA328P.aspitis
serves as the final word ¢ime operation and performance of 8&8Pand all interested parties should
become familiar with it.

There is a companidab manuato accompany thigext OtherOER (Open Educational Resourts)
manuals in this series inclu@C and AC Electrical Circuits<Computer Programming witRythonand
Semiconductor Devicean OER is available for @erational Amgfiers and Linear Integrated Circuits,
and a Semiconductor Devices text is due in early 2RlEAse checiy web sites for the latest versions.

A Note from the Author

This text isused at Mohawk Valley Community College in Utica, NY, for our ABET accredited AAS
program in Electrical Engineering Technolo®pecifically, it is used in our second year embedded
cortrollers coursel am indebted to my students,-a@rkers and the MVCC family for their support and
encouragement of this projegYhile it would have been possible to seek a traditional publisher for this
work, as a longime supporter and contributor fi@eware and shareware computer software, | have
decided instead to release this using a Creative Commorsonumercial, sharalike license. |

encourage others to make use of this manual for their own work and to build upon it. If you do add to this
effort, | would appreciate a notification.

AWhen things get so big, | dondét trust
Youwantsomecontrglou gotta keep it small oo

- Peter Gabiriel

Embedded Controllers 5

http://www.atmel.com/devices/ATMEGA328P.aspx

Embedded Controllers

Table of Contents

1. Course Introduction 8
2. C Memory Organization 10
3. C Language Basics 14
4. C Language Basics I 24
5. C Storage Types and Scope 32
6. C Arrays and Strings . 36
7. C Conditionals and Looping 40
8. C Pointers 48
9. C Look-Up Tables 52
10. C Structures 56
11. C Linked Lists* 60
12. C Memory * 64
13.C Filel/O* 68
14. C Command Line Arguments * 72
15. Embedded Programming 74
16. Hardware Architecture 78
17. AVR ATmega 328P Overview ** 84
18. Bits & Pieces: includes and defines 90
19. Bits & Pieces: Digital Output Circuitry 98
20. Bits & Pieces: Digital Input Circuitry 102
21. Bits & Pieces: pinMode 106
22. Bits & Pieces: digitalW rite 112
23. Bits & Pieces: delay 116
24. Bits & Pieces: digitalRead 124
25. Bits & Pieces: Analog Input Circuitry 132
26. Bits & Pieces: analogRead 136
27. Bits & Pieces: analogWrite 142
28. Bits & Pieces: Timer/Counters 146
29. Bits & Pieces: Interrupts 154
Appendices 160
Index 165

* Included for more complete language coverage but seldom used for small to medium scale embedded work.

** |ncluding modest comic relief for film noir buffs.

Embedded Controllers

1. Course Introduction

1.1 Overview

This course introduces the C programming language and specifically addnesisesie of embedded
programming. It is assumed that you have worked with some other high level language before, such as
Python, BASIC, FORTRAN or Pascal. Due to the complexities of embedded systems, we begin with a
typical desktop system and examine streicture of the language along with basic examples. Once we

have a decent grounding in syntax, structure, and the development cycle, we switch over to an embedded
system, namely afAirduino based development system.

This course is designed so that you can do considerable work at home with minimal cost, if you choose
(entirely optional, but programming these little beasties can be addictbefece warned). Along with

this course text you will need an ArduinoUhoo ar d (about $25) and a USB ho
warto power adapter for it may also be useful. Th
you prefer print books and want more detail, you may also wish to purchase one of the many C

programming texts avatal e. Two g o o d sbobkPrbgeasmmmiagrineGanithecohesoyn 6

Deitel & Deitel C-How to ProgramWhichever book you choose, make sure that its focus is C, not C++.

You will also need a desktop C compiler. Just about any wijliretluding Visual C/C++, Borland, Code
Warrior, or even GCC. A couple of deckelesCafidr eewar e
Miracle C

C
<

1.2 Frequently Asked Questions

Why learn C language programming?

C is perhaps the most widely used development language today. That alone is a good reason to
consider it, but thereds more:

1 Itis a modern structured language that has been standaf@id&d).

1 Itis modular, allowing reuse of code.

1 Itis widely supported, allowing source code to be used for several different platforms by just
recompiling for the new target.

9 lts popularity means that several thpdrty addons (libraries and moduleaje available to

Astretcho the | anguage.
1 It has type checking which helps catch errors.
T 1t is very powerful, allowing you to get ¢ficl os
1 Generally, it creates very efficient code (small space and fast execution).

What s the di feén€amdiCe+t8 bet w

C++ is a superset of C. First came C, then came
because ++ is the increment operator i n C. Thus,
me the next C0o. C +s+ pdlouess ae vwehroylteh ilnogt Omodroee. These

free and embedded applications usually cannot afford the overhead. Consequently, although much

8 Embedded Controllers

http://www.arduino.cc/
http://www.smorgasbordet.com/pellesc/
http://www.c-compiler.com/

desktop work is done in C++ as well as C, most embedded work is done in C. Desktop development
systemsae usually referred to as C/ C++ systems mean
development systems may be strictly C (as is ours).

Where can | buy an Arduino development board?

TheArduino Unoboard is available from a variety of sources including Bigy, Mouser, Parts
Express and others. Shop around!

What ds the difference between desktop PC devel opm
programming?

Desktop development focuses on applications for desktop corsptiteese include things like word

processors, graphing utilities, games, CAD programs, etc. These are the things most people think of
when they hear the word Acomputero. Embedded pr
applications that surrodrus every day. Examples include the code that runs your microwave oven,
automobile engine management system, cell phone, and many others. In terms of total units,

embedded applications far outhnumber desktop applications. You may have one or even aifew PCs

your house, but you probably use dozens of embedded applications every day. Embedded

microcontrollers tend to be much less powerful but also much less expensive than their PC

counterparts. The differing programming techniques are an integral pag obtiise and we shall

spend considerable time examining them.

How does C compare with Python?

If, like many students taking this course, your background is witRytigonlanguage, you may find

certain aspectsf C a little odd at first. Some of it may seem overly complicated. Do not be alarmed

though. The core of the language is actually simple. Python tends to hide things from the programmer
while C doesnot. I nitially, ed andisdoes boetmsnost o ma ke t
simple of programs. For more complicated tasks C tends to cut to the heart of the matter. Many kinds

of data manipulation are much easier and more efficient in C than in other languages. One practical
consideration is that C &compiled language while most versions of Python are essentially

interpreted. This means that there is an extra step in the development cycle, but the resulting compiled
program is much more efficient. We will examine why this is so a little later.

How does C compare with assembly language?

Assembly has traditionally been used when code space and speed are of utmost importance. Years
ago, virtually all embedded work was done in assembly. As microcontrollers have increased in power
and the C compilersave improved, the tables have turned. The downside of assembly now weighs
against it. Assembly is processspecific, unstructured, not standardized, nor particularly easy to read
or write. C now offers similar performance characteristics to assemblyithualivthe advantages of a
modern structured language.

Embedded Controllers 9

http://arduino.cc/en/Main/ArduinoBoardUno
http://www.python.org/

2. C Memory Organization

2.1 Introduction

When programming in C, it helps if you know at least a little about the internal workings of simple
computer systems. As CotehbHde Wwaybenfiwhbebh terthen
well preferred coding techniques will be more apparent.

First off, | etds narrow the field a bit by decl ar
sort of thing one might see in amkedded application. That means a basic processor and solid state
memory. We wondét worry ab o u tSpedificdetailsabrcérning controllero ni t or

architecturememory hardware and internal 8@cuitry are covered in later chapser

2.2 Guts 101

A basic system consists of a control device called a CPU (central processing unit), microprocessor, or
microcontroller. There are subtle distinctions between these, but we have little need to go very deep at
this point. Microcontrollersand not to be as powerful as standard microprocessors in terms of processing
speed, but they usually have an array of input/output ports and hardware functions (such as analog to
digital or digital to analog converters) on chip that typical microprocedsonst. To keep things simple

we shall use the term fiprocessorodo as a generi c.

Processors are often connected to external memory (RAM chips). Microcontrollers generally contain
sufficient orboard memory to alleviate this requirement, but it is worthwbileote that we are not

talking about large (megabyte) quantities. A microcontroller may only contain a few hundred bytes of
memory, but in simple applications that may be sufficient. Remember, a byte of memory consists of 8
bits, each bit being thought as a 1/0, high/low, yes/no, or true/false pair.

In order for a processor to operate on data held
register (it may have dozens of registers). Only in a register can mathematical or logatbiopbe

carried out. For example, if you desire to add one to variable, the value of the variable must first be

copied into a register. The addition is then performed on the register contents yielding the answer. This
answer is then copied back to thegoral memory location of the variable. It seems a little roundabout at
first, but dondt wo wiltakecare ¢f mostdf thosemeaailsdfagyu.c ompi | er

2.3 Memory Maps

Every byte of memory in a computer system has an address asswdfatiedThis is a requirement.

Without an address, the processor has no way of identifying a specific location in memory. Generally,

memory addressing starts at 0 and works its way up, although some addresses may be special or

Areser vedo iThatis, aspecificsagdsessamght not refer to normal memory, but might refer

to a certain input/output port for external cC ommu
mapo. This is nothing more than awthhnuvwgtiethedowesay of m
(starting) address at the top and other people draw them with the lowest address at the bottom.

10 Embedded Controllers

Hereds an example with just six bytes of memory:

address 0

address 1

address 2

address 3

address 4

address 5

Figure 2.1 simple memory map

Each address or slot represents a place we can store one byte. If we had to remember specific addresses

we would be doing a lot of work. Instead, the C compiler will keep track of this for us. For example, if we
declare ahar namedx, it might be at address 2. I f we need t
Afetch the value at addressXt2andlnbé eadmmwiel smayge i
make this work out to the proper address (2). This abstmagetises our mental burden considerably. As

many variables require more than one byte, we may need to combine addresses to store a single value. For
example, if we choseshortint , that needs two bytes. Suppose this variable starts at address 4. It will

also require the use of address 5. When we access this variable the compiler automatically generates the
code to utilize both addr eshogtiats .Dur littke sixsbgte memoryi k n o ws 0
map could hold @har , 3short int , Llongint with 1shortint , llongint with 2char , or

some other similar combination. It cannot holtbable as that requires 8 bytes. Similarly, it could not

hold an array of 4 or moshort int

Arrays are of special interest as they must be contiguous in mefruorgxample, suppose a system has

1000 bytes of memory and a 200 element char array was declared. If this array starts at address 500 then
all of the slots from 500 through 699 are all ocat
with a few bytes here and a few bytes there. This requirement is due to the manner in which arrays are
indexed (accessed), as we shall see later.

2.4 Stacks

Many programs need only temporary storage for certain variables. That is, a variable may only be used

for a |imited time and then fithrown awayo. |t wou
sort of variable. In its place, many systems ustek Ordinarily, an application is split into two parts, a

code section and a data section. Theda secti on contains the fAper manent
will not consume the entire memory map, the remainder of the memory is often used for temporary

storage via a stack. The stack starts at the opposite end of the memory map and grows tooded the

and data sections. It is called a First_astOut stack or FILO stack. It works like a stack of trays in a

Embedded Controllers 11

cafeteria. The first try placed on the stack will be the last one pulled off and vice versa. When temporary
variables are needed, this memarga is used. As more items are needed, more memory is taken up. As
our code exits from a function, the temporayt¢) variables declared there are no longer needed, and
the stack shrinks. If we make many, many function calls with many, many declagddes it is

possible for the stack to overrun the code and data sections of our program. The system is now corrupt,
and proper execution and functioning of the program are unlikely.

address 0

area used by code and data

area currently ursed

stack area, grows toward address 0

address 65,535

Figure 2.2 basic memory layout

Above is a memory map example of a system with 64k bytes of memory (k=102%t tndividual
memory slots @ not shown. Only the general areas are shown.

It is worthwhile to note that in some systems, code and data are in a common area as shown (Von
Neumann architecture) while in others they are physically split (Harvard architecture). Whether split or

not, the basic concepts remain. So, why would we want to split the two areas, each accessed via its own
memory bu¥? Simple, separating the code and data allows the processor to fetch the next instruction
(code) using a memory bus that is physically separate tihe data bus it is currently accessing. A shared
code/data memory bus would require special timing to coordinate this process as only one thing can be on
the bus at any given time. Having two separate memory buses will speed execution times.

1 A bustypically refers to a collection ofives or connections upon which multiple data bits (or address bits) are
sent as a group.

12 Embedded Controllers

Embedded Controllers

13

3. C Language Basics

3.1 Introduction

C is a terse language. It is designed for professional programmers who need to do a lot with a little code
quickly. Unlike BASIC or Python, C is a compiled language. This means that once you have written a

program, it need® be fed into a compiler that turns your C language instructions into machine code that

the microprocessor or microcontroller can execute. This is an extra step, but it results in a more efficient
program than an interpreter. An interpreter turnsyodreo i nt o machine | anguage wt
essentially a line at a time. This results in slower execution. Also, in order to run your program on another
machine, that machine must also have an interpreter on it. You can think of a compiler as doing the

translation all at once instead of a line at a time.

Unlike many languages, C is not line oriented, but is insteadlfn@e A program can be thought of as
consisting of three major components: Variables, statements and functions. Variables are fust place
hold things, as they are in any other language. They might be integers, floating point (real) numbers, or
some other type. Statements include things such as variable operations and assignments (i.e., setxto 5
times y), tests (i.e., is x more thar?)0and so forth. Functions contain statements and may also call other
functions.

3.2 Variable Naming, Types and Declaration

Variable naming is fairly simple. Variable names are a combination of letters, numerals, and the
underscore. Upper and lowerseacan be mixed and the length is typically 31 characters max, but the

actual limit depends on the C compiler in use. Further, the variable name cannot be a reserved (key) word
nor can it contain special characters such; as - and so on. So, legal mees include things like,

volts , resistor7 , or even_Wanna_Go_Home_ Now

C supports a handful of variable types. These include floating point or real numbers in two basic flavors:
float , which is a 32 bit number, aniduble , which is a higher precisiorersion using 64 bits. There

are also a few integer types includittgar , which is 8 bitsshortint ~ , which is 16 bits, andong

int , which is 32 bits. Ashar is 8 bits, it can hold 2 to the 8th combinations, or 256 different values.

This is sufficient fo a single ASCII character, hence the name. Similadyoa int (or short , for

short!) can hold 2 to the 16th combinations, or 65,536 vathes.s andint s may besigned or

unsigned (signed , allowing negative values, is the default). There is alsaia pldint , which might

be either 16 or 32 bits, depending on which is most efficient for the compiler (to be on the safe side, never
use plain oldnt if the value might require more than 16 bits).

Sometimes you might also come across special douldeitbegers (also called long longs) that take up 8
bytes as well as 80 bit extended precision floats (as defined by the IEEE).

14 Embedded Controllers

Here is a table to summarize the sizes and ranges of variables:

Variable Type Bytes Used Minimum Maximum
char 1 -128 127
unsigned char 1 0 255
short int 2 -32768 32767
unsigned short int 2 0 65535
long int 4 a -2 billion a 2 bil
unsigned long int 4 0 a 4 bil
float
(6 significant digits) 4 +1.2 E-38 + 3.4 E +38
double
(15 significant digits) 8 +2.3E-308 +1.7E+308

Figure 3.1 numeric types and ranges

C also supports arrays and compound data types. We shall examine these in a later segment.

Variables must be declared before they are used. They cannot be created on a whim, so to speak, as they
are inPython. A declaration consists of the variable type followed by the variable name, and optionally,
an initial value. Multiple declarations are allowed. Here are some examples:

char x; declares a signed 8 bit integer called x

unsigned char y; declares amnsigned 8 bit integer called y

short z, a; declares two signed 16 bit integers named z and a

float b =1.0; declares a real number named b and sets its initial value to 1.0

Note that each of these declarations is followed with a-setoin. The semcolon is the C language way
of saying AThis statement ends heredo. This means
of dealing with spaces. The following are all equivalent and legal:

float b = 1.0;

float b=1.0;
float b = 1.0;

Embedded Controllers 15

3.3 Functions

Functions use the same naming rules as variables. All functions use the same template that looks
something like this:

return_value function_name(function argument list)

{
}

statement(s)

Figure 3.1, basic function template

You might thnk of the function in the mathematical sense. That is, you give it some value(s) and it gives

you back a value. For example, your calculator has a sine function. You send it an angle and it gives you

back a value. In C, functions may have several argsneat just one. They might not even have an
argument. Al so, C functions may return a value, b
defined within the opening and closing brace flairSo, a function which takes two integers, x and y, as
arguments, and returns a floating point value will look something like this:

float my_function(int x, inty)

{
}

/I ... appropriate statements here

I f the function doesnowid tsaskd If adunctioneditherrequredadsues, t h
nor returnsa value, it would look like:

void other_function(void)

{
}

/I ... appropriate statements here ...

This may appear to be extra fussy work at first, but the listing of data types makes a lot of sense because
C has something callagpe cheking This means that if you try to send a function the wrong kind of

vari abl e, or even the wrong number of wvariabl es,
Thus if you try to senchy_function() above two floats or three integers, the pder will complain

and save you a big headache during testing.

All programs must have a place to start, and in C, program execution begins with a functiomaialled

This does not have to be the first function written or listed, but all programdauest function called
main.Her e 8 s o ur ,féundrinsFigurep3r2 ofallowsrgn

16 Embedded Controllers

/* Our first program */
void main(void)
{
float x = 2.0;
floaty = 3.0;
float z;
z = X*yl(x+y);
}
Figure 3.2, a simple program
There is only one furtion heremain() . It takes no variables and retur

First, the/**/ pair denotes a comménAnything inside of the comment pair is ignored by the
compiler. A C comment can stretch for many lines. Once inside the fanttree variables are declared
with two of them given initial values. Next, the variabteandy are multiplied together, divided by their
sum, and assigned 10 As C is freeflow, an equivalent (but ugly) version is:

/* Our first program */ void mai n(void){
float x=2.0;float y=3.0;float z;z=x*y/(x+y);}

Figure 3.3, alternate format (to be avoided)

This is the complete opposite of Python which has very rigid spacing and formatting rules.

Now, suppose that this add, multiply, divide operatiomiaething that you need to do a e could
split this off into a separatanction. Our program now looks likeigure3.4 on the following page

2C also allows // to denote a single Iine comment witho

Embedded Controllers 17

/* Our second program */

float add_mult_div(float a, float b)
{

float answer;

answer = a*b/(a+b);
return(answer);

}

void main(void)
float x = 2.0;
floaty = 3.0;
float z;

z = add_mult_div(x, y);

Figure 3.4, program with separate function

The new math function takes tfloat s as arguments and returnfioat to the caller. The copiler

sees the new function before it is usecuin() |, t hus, it already Aknowso t h:
float s and that the return value must be assignedidata . It is very important to note that the new

math function uses different variable nan@andb) from the callerX andy). The variables in the new

math function are really just plat®lders. The values from the original callahdy) are copied to these

new variablesg andb) and used within the new function. As they are copies, theype altered without

changing the original values rfandy. In this casex andy are said to béocal to themain() function

while a andb arelocal to theadd_mult_div() function. In otherwordsgi sndét viman)bl e fr om
SO0 you c an OlteritleSondarlylxe nstnadlt| yv iads imiotldig() f rsoom you canot
accidentally alter it either. This is a positive boon when dealing with large programs using many variable
names. While itds not wusually priletbeerkmoend, t here ar
Afeverywher e 0. globdiitersseYowcaremake adridblgkobal by simply declaring them at

the beginning of the program outside of the functions (i.e., right after that initial comment in our

example).

3.4 Libraries

The examps above are rather limited because, although they perform a calculation, we have no way of
seeing the result! We need some way to print the answer to the computer screen. To do this, we rely on
system functions and libraries. There are a series of Esrarcluded with most C development systems

to cover a variety of needs. Essentially, someone has already coded, tested and compiled a bunch of
functions for you. You add these functions to your program through a procesdickifegl Linking

simply comlines your compiled code along with any required library code into a final executable

program. For basic printouts, data input, and the like, we usgahdard 10 (Input/Output) libraryor

stdiofor short. There is a function in this library nanpeaitft () f or Aprint for mattedo.

18 Embedded Controllers

compiler can do type checking, it must know something about this new function. We tell the compiler to
look into a special file calledlzeader fileto find this information. Every library will have an associated
heade file (usually of the same name) and it will normally end with dile extension. The compiler
directive is called ainclude statement.

/I Our third program, this is an example of a single line comment
#include <stdio.h>

void main(void)

{
}

printtt (AHel |l o wob) d.

Figure 3.5, program with library function call

This program simply prints the messadgdlo world.to the screen. The backslasitombo is a special

formatting token that meamsld a new lindi.e., bring the cursor to the linelow). If we did not add the

#include di rective, the compi | eprintfvo ydndwodld complaio whera ny t hi
we tried to use it. So, whatodés i n fanctiorepaotbtypes f i | e ?
The prototypes are nadtig more than a template. You can create your own by cutting and pasting your
function name with argument list and adding a semicolon to it. Here is the function prototype for our

earlier math function:

float add_mult_div(float a, float b);

Youcoudm ke your own | ibrary of functions if you wan
include statement in your code, and remember to add in your library code with the linker. This will

allow you to reuse code and save time. We will look at mulfiiglgorojects and more on libraries in a

later segment.

Consequentlyi, f we want to print out twimcup aith somethingltke t he f
Figure3.6 on thefollowing page

Embedded Controllers 19

r

/* Our fourth program */
#include <stdio.h>

void main(void)

{

float x = 2.0;

floaty = 3.0;

float z;

z = X*yl(x+y);

printf(fAThe answer &3 ; %f
}

Figure 3.6, a more complete program

The%f in theprintf() function serves as a place holder for the variabléyou need to print several
values you can do something like this:

printf(AThe answer from\%wb, ard % 3 ,; %f

In this case, the firstf is used foix, the seconéof for y, and the final one far. The result will look
like:

The answer from 2.0 and 3.0 is 1.2

3.5 Some Simple Math

C uses the same basic math operators as many other languages. These,inclydéevide), and
* (multiply). Parentheses are used to group elements and force hierarchy of operations. C als&4ncludes
for modulo. Modulo is an integer operatidrat leaves the remainder of a division, thus 5 modulo 7 is 2.

The divide behaves a little differently with integers than with floats as there can be no remainder. Thus 9
integer divide 4 is 2, not 2.25 as it would be if you were using floats. C alsodegies of bit

manipulators that we will look at a little later. For higher math operations, you will want to look at the

math library fnath.h header file). Some examples ai®) , cos() ,tan() ,log1l0() (common log)

andpow() for powers and roots. Dot try to use® as you do on many calculatoxstaised to they

power isnot x*y but ratherpow(x,y) . The” operator has an entirely different meaning in C!

Recalling what we said earlier about libraries, if you wanted to use a functianlike in yourcode,

youdd have to tell the compiler where to find the
youdd add the Iine:

#include <math.h>

20 Embedded Controllers

A final caution: The examples above are meant to be clear, but not necessarily the most efficient way of
doing things. As we shall see, sometimes the way you code something can have a huge impact on its
performance. Given the power of C, expert programmers can sometimes create code that is nearly
indecipherable for ordinary people. There is a method behadpparent madness.

3.6 The program creation/development cycle
To create a C program:

1. Do the requisite mental work. This is the most important part.

2. Create the C source code. This can be done using a text editor, but is normally done within the
IDE(Int egr ated Devel opment Environment). C sourc
extension.

3. Compile the source code. This creates an assembly output file. Normally, compiling
automatically fires up the assembler, which turns the assembly file inéelaine language
output file.

4. Link the output file with any required libraries using the linker. This creates an executable file.
For desktop development, this is ready to test.

5. For embedded development, download the resulting executable to the tedgetrbgin our
case, the Arduino development board). For the Arduino, steps 3, 4, and 5 can be combined by

selecting ABuildo from the | DE menu.
6. Test the executabl e. If it doesndét behave prop
3.7 Summary

Here are some things keep in the back of your mind when learning C:

1 Cisterse. You can do a lot with a little code.

9 As itallows you to do almost anything, a hovice can get into trouble very quickly.

T It is a relatively thin | anguagteartofthelangiageg t hat
per se, but come from lirfkme libraries.

9 Function calls, function calls, and more function calls!

9 Source code is free fl ow, not l ine oriented. A
semicolon.

9 Shortcuts allow experts toaate code that is almost indecipherable by normal programmers.

9 All variables must be declared before use (not free flow as in Python).

1T Vari ables can be gl obal or | ocal in scope. Tha

the program and nohianother.

Embedded Controllers 21

3.8 Exercises

1. Write a C code comment that includes your name and the date. Use both the single line and the multi
line styles.

2. Write a function that will take three floating point values as arguments. The function should return the
avemge value of the three arguments.

3. Write a program that will print out your name.

22 Embedded Controllers

Embedded Controllers

23

4. C Basics |l

4.1 Input and Output

We 6 v e

s e e printf() h e to semceinfoonfation to the computer scraeimtf() is a very large
riants of for mat

and complicated functiowi t h

thingsbo

u

sed as

many possible va
pl acehol ders fo

r values. Some ex

%of

%lf
%e
%g
%d
%lId
%X
%0
%u
%cC

%s

float

double (long float)

float using exponent notation
float using shorter of orf style
decimainteger

decimal long integer
hexadecimal (hex or base 16) integer
octal (base 8) integer
unsigned integer

single character

character string

Figure 4.1, print format types

Suppose that you wanted to print out the value of thablarins in decimal, hex, and octal. The
following instruction would do it all:

printf (AThe

answer is %d, or hewx, %ansor aoast abhn%o) ;

Note how the three variables are labeled. This is important. If you printed something in hex witt®ut so

form of

how woul

I
d

abel ,
you Kk

you might not know if it was
ma | or 23 hex (35

now i tos 23 deci

constant in your C code? The compiler woulddhavh o way o f
values are prefixed witldox. Thus, we havex23 for hex 23. Theprintf()
automatically add thex on output. The reason is because it may prove distracting if you have a table

flledonl y wi t h hex

h e x

S
a

(0]

Aknowingo either.

function does not

v al u e0x%dinstdad o juseodios the oatpubfarngah t o

You can also add a field width specifier. For examfjaied means print the integer in decimal with 5
spaces minimum. Similarlgp6.2f means print the floating pdiralue using 6 spaces minimum. The

i .

20

S

a

preci

sion specifier,

you can see, this is a very powerful and flexible function!

The mirror input function iscanf().

the same sort of format specifierspaistf()

and in this

Thisissim | ar t sinpuP ystatBneent.GAlthough you can
ask for several values at once, it is generally best to ask for a single value when using this function. It uses

. There is one important point to note. Haeanf()

us e

case

function needs to know where to place the entered value in computer memory. Simply informing it of the

24

Embedded Controllers

name of the variable is insufficient. You must tell it where in memory the variable is, in other words, you
must specify the address of the var@alf usestheoper at or t o signify fdAaddress
wish to obtain an integer from the user and place it in a variable gallege , you might see a

program fragment | i ke soé
p ntf (APl ease enter the voltage: 0);
s nf (A%do, &voltage);

It is very common for new programmers to forget the&. Be forewarned!

4.2 Variable Sizes

A common question among hew programers is AWhy ar
have two different sizes of reafgjat at 32 bits, andouble at 64 bits. We also have three different

sizes of intgers at 8, 16, and 32 bitsédach I n many | anguages, theredés just
variation, so why does C offer doeshadty adh adi.ceou h
opt ons in order to optimize your code. I f you have
need to use more than a short (16 bit) integer. Using a 32 bit integer simply uses more memory. Now, you
might consider 2 extra bytes to be no big deal,remember that we are talking about embedded

controllers in some cases, not desktop systems. Some small controllers may have only a few hundred

bytes of memory available for data. Even on desktop systems with gigabytes of memory, choosing the

wrong si2 can be disastrous. For example, suppose you have a system with an analog to digital converter

for audio. The CD standard sampling rate is 44,100 samples per second. Each sample is a 16 bit value (2
bytes), producing a data rate of 88,100 bytes per seblmvdimagine that you need enough memory for

a five minute song in stereo. That works out to nearly 53 megabytes of memory. If you had chosen long

(32 bit) integers to hold these data, youbd need
audo CD never exceed 16 bits, it would be foolish to allocate more than 16 bits each for the values. Data
sizesarepowesf-2 mul ti pl es of a byte though, so you canoét
l engt h. ltd6s 8, 1 6 ,e comtrollei3 Bavefan uppet limgof Wodist part (som

In the case ofloat versusdouble , float is used where space is at a premium. It has a smaller range
(size of exponent) and a lower precision (number of significant digits)thdae . double is generally
preferred and is the norm for most math functions. Plain floats are sometimes referred to as singles (that
is, single precision versus double precision).

I f you dondét know the si ze iff mghtheeithdri6ou3RkEts dat a i
depending on the hardware and compiler), you can usizief) command. This looks like a

function but ités really built into the | anguage.
It returns the size required in bytes.

size = size of(int);

size will be either 2 or 4 depending on the system.

31n some systems, 80 bit doubles and 64 bit integers are also available.

Embedded Controllers 25

4.3 More Math

OK, so what happens if you add or multiply terart int together and the result is more than 16 bits

long? You wind up with an overrange condition. Note that the compihgrotavarn you of this because

whether or not this happens will depend entirely on values entered by the user and subsequently computed
within the program. Hopefully, you will always consider maximum value cases and choose appropriate

data sizesandthiswodt be a probl em. But what actually happe
be ignored. Consider an 8 bit unsigned integer. It goes from 0 to 255. 255 is represented as eight 1s. What
happens if you add the value 1 to this? You get a 9 bit nuraldefollowed by eight Os. That ninth bit is

thrown away as the variable only has eight bits. Thus, 255 plus 1 equals 0! This can create some serious
problems! For example, suppose you wanted to use this variable as a loop counter. You want to go

througha | oop 500 times. The |l oop will never terminat
You keep adding one to it, but it keeps flipping back to 0 after it hits 255. This behavior is not all bad; it

can, in fact, be put to good use with things likerrupts and timers, as we shall see.

What happens if you mix different types of variables? For example, what happens if you divithe a

by anint or afloat by double ? C will promotethe lesser size/precision types to the larger type and

then do he operation. This can sometimes present a problem if you try to assign the result back to

somet hing smaller, even if you know it wil!/l al way
longint by anothetongint and try to assign the result tahbortint . You can get around this by

using acast This is your way of telling the compiler that you know there is a potential problem, but to go

ahead anyway (hopefully, because you know it will always work, not just because you want to defeat the
compile warning). Casting in C is similar to type conversion in Python (e.gintthe f unct i on) . Her
an example.

short int x, y=20;
long int z=3;

x=(short int)(y/z);

Note how you are directing the compiler to turn the division irtieoat int . Otherwisethe result is in
fact alongint due to the promotion gfto the levelok. What 6s x?h&hyali tésof of
Remember, the fractional part is meaningless, and thus lost, on integer divides.

Casting is also useful when using math functidihgou have to uséloat , you can cast them to/from
double to make use of functions defined witbuble . For example, supposeb, andc are declared as
float but you wish to use theow() function to raise to theb power.pow() is defined as takinguwo
double arguments and returningdauble answer.

¢ = (float)pow((double)a, (double)b);
This is a very explicit exampl e. Many times you ¢c

you as in the integer example above. Sometimes beingieigh good practice just as a form of
documentation.

26 Embedded Controllers

4.4 Bitwise Operations

Someti mes youdd |ike to perform bitwise operation

want to logically AND two variables, bit by bit? Bitwise operatians very common when programming

microcontrollers as a means of setting, clearing and testing specific bits in control registers (for example,

setting a specific pin on a digital port to read mode instead of write mode). C has a series of bitwise

operatorsThey are:

& AND
| OR
A XOR

~ Onebs Compl
>> Shift Right
<< Shift Left

Figure 4.2 bitwise operators

Note the doubleuse &f or Aaddress of o6 and now AND. The
the binary operation is always AND, $0& b would not imply the address df. If you wanted to AND
x with y, shift the result 2 places to the left and assigntheresulttoy ou 6 d use:

z = (x&y)<<2;

L e tlodksat a few examples. Suppose the variaklésandZ areunsigned char s.X andY are set to
13 andl34, respectively. In hext h a0k0d and0x86for bit patterns of 00001101 and 1000011

Z = X<<3; /I Z is 01101000 or 0x68
Z = X>>1; /I Z is 00000110 or Ox06
Z = ~X; /I Z is 11110010 or Oxf2
Z = X|Y; /I Z is 10001111 or Ox8f
Z = X&Y; /I Z is 00000100 or 0x04
Z = XMY; /I Z is 10001011 or 0x8b

4.5 Setting, Clearing and Reading Register Bits

unary

Bitwise operations may appear to be somewhat arcane to the uninitiated but are in fact commonly used. A

prime use is in setting, clearing and imgtspecific bits in registers. One example involves configuring

bidirectional ports for input or output mode vidata direction registertypically abbreviated DDR.
Each bit of the DDR represents a specific output pin. A logic high might indicate outdetwhile a

logic low would indicate input mode. Assuming DDR is an 8 bit register, if you wanted to set all bits

except the Obit to input mode, you could write

DDR = 0x01; // set bit zero to output mode

41n C, bitposition counting, like most sequences, starts from position 0 not position 1.

Embedded Controllers 27

If sometime later you wanted to also set ffi and 29 bits to output mode while keeping everything else
intact, the easy way to do it is simply to OR the bits you want:

DDR = DDR | 0x06;
The prior operation may be performesing the more common shorthand:
DDR |= 0x06;

Notethat the precedicodedoes not affect any of the other bits so they stay in whatever mode they were
originally. By the way, a set of specific bits (such as the 0x06 above) is often referredvio @ettarnor
bitmask

To see if a specific bit is set, simply AND iaatl of OR. So, to see if th& hiit of DDR is set for output
mode, you could use something like:

if (DDR & 0x02) /I true if set

Clearing bits requires ANDing with a bitmask that has been complemented. In other words, all 1s and 0s
have been reversaa the bit pattern. If, for example, we want to clear thea®d 4'b i t s , wedd firs:
complement the bit pattern 0x11 yielding Oxee. Then we AND:

DDR &= Oxee;

Often, itbés easier to just use the | olenANDIt compl e
DDR &= (~0x11);

I f youbre dealing with a single bit, you can use
figuring out the bit pattern in hex. To set tHél8t and then clear thé"bit of DDR, you could use the
following:

DDR |= (0x01<<3);
DDR &= ~(0x01<<4);

These operations are so common that they are often invoked usinrtjremarpansion via #define

4.6 #define

Very often it is desirable to use symbdprébablyconst a
prefer to use a symbol such as Pl instead of the number 3.14159. You can do this wiidfitiee

preprocessor directive. These are normally found in header files (such as stdio.h or math.h) or at the top

of a module of C source code. You migbkt something like:

#define PI 3.14159
Once the compiler sees this, every time it comes across theRblewill replace it with the value

3.14159. This directive uses a simple substitution but you can do many more complicatetidinings
this. For xkample, you can also create something that looks like a function:

28 Embedded Controllers

#define parallel((x),(y)) (C* /() +(y))
Thex andy serve as placeholders. Thus, the line

a = parallel(b, ¢);
gets expanded to:

a = (a*b)/(a+b);

Why do t hi s ?in-lhe expaos®mer mactadb sT hmeant means t hat thereods

overhead and the operation runs faster. At the
programmer to follow. OK, but why all the extra parentheses? The reason is beaadgeare

placeholders, and those items might be expressions, not simple variables. If you did it this way you might
get in trouble:

#define parallel(x,y) X*yl(X+y)

What if x is an expression, as in the following example?
a = parallel(2+b,c);

This woud expand to:
a = 2+b*c/(2+b+c);

As multiplication is executed before addition, you wind up witheing added to the productiofimesc
afterthe division, which is not the same as the sumafidb being multiplied byc, and that quantity
then beinglivided. By using the extra parentheses, the order of execution is maintained.

Referring back to the bit field operations, here are some useful definitions for what appeantctibns
but which arein fact,bitwise operations expandedline:

#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (LUL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))

The1UL simply means 1 expressed as an unsigned long. Firtally, could also be defid as a symbol
which leads to some nice looking sdtficumenting code:

#define LEDBIT 7
/I more code here

bitSet(DDR, LEDBIT);

#define expansions can get quite tricky because they can have nested references. This means that one
#define may contan within it a symbol which is itself #&define . Following these can be a little

tedious at times but ultimately are worth the effort. We shall look at a few down the road. Remember,
these are done to make dayday programming easier, not to obfuscatecibee. For now, start with

simple math constant substitutions. They are extremely useful and easy to use. Just keep in the back of
your mind that, with microcontrollers, specific registers and ports are often given symbolic names such as

Embedded Controllers 29

S

a

r

PORTB so that yodon't have to remember the precise numeric addresses of them. The norm is to place
these symbolic constants in ALL CAPS.

4.7 Keywords

Here is a list of keywords in the C language:

auto break case char const
continue do default double else
entry extern float for goto

if int long register return
sizeof short static struct switch
typedef union unsigned volatile while

Figure 4.3 C language keywords

Webve | ooked at quite a few of t he sgaessaleuse af.d\y .
stated previously, C is a fiskinnyd | anguage!
4.8 Exercises

1. Write a |line of code t hauolwti 4 &isthéaluedgiven by the s t
floating point variableutput_voltage

2. Write a line ofcodeto define a constant call®ECIP2PIt hat i s equal to 1/ (2°

3. Write the code to determine the number of bytes required for a variable RERSUPPLY.

4. Assume the 8 bit variableexists. Write the code to set the MSB (most significant bit), leaving all
other bits unchanged.

5. Assume the 8 bit variableexists. Write the code to set the LSB (least significant bit), leaving all other
bits unchanged.

6. Assume the 8 bit variableexists. Write the code to clear the MSB and LSB, leaving all other bits
unchanged.

7. Assume the Bit variablewexists. Write the code to complement each bit (flip 0 to 1 and 1 to 0).
8. If Xis 0x04 andy is 0x09, what are &) Y, b) X&Y, c) ~X, d) 0xf1& Y?

9. If Xis OxfO andyY is Ox11, what are &) Y, b) X&Y, c)~X, d) 0xf1& Y?

30 Embedded Controllers

Som

at e

) -

Embedded Controllers

31

5. C Storage Typ es and Scope

5.1 Types

C has several ways of storing or referencing variables. These affect the way variables behave. Some of
the more common ones are: auto, register, and static.

Auto variables are variables declared within functions that are niatstaiegister types. That is, the

auto keyword is the default. Normal ly, auto variabl e
doesndét require this. The stack is basically a ch
when it B first run. It is a place for temporary storage, with values popped onto and pulled off of the stack

in first-in, lastout order (like a stack of plates). Unless you initialize an auto variable, you have no idea

what its value is when you first use i talue happens to be whatever wathat memory location the

previous timet was used. It is important to understand that this includes subsequemd eafunction
(.e,itsprioval ue i s not Aremember edod t hiebecawseany ti me you
subsequent call to a function does not have to produce the same the memory locations for these variables,
anymore than you always wind up with the same plate every time you go to the cafeteria.

Register variables are similar to auto typebehavior, but instead of using the usual stack method, a

CPU register is used (if available). The exact implementation is CPU and compiler specific. In some case
theregister keyword is ignored and a simple auto type is used. CPU registers offerafastes than

normal memory so register variables are used to create faster execution of critical code. Typically this
includes counters or pointers that are incremented inside of loops. A declaration would like something
like this:

register int x;
Staticvariables are used when you need a variable that maintains its value between function calls. So, if
we need a variable that wild.l ffappear the way we |
this:

static chary;

There is one important diffence between auto and static types concerning initialization. If an auto
variable is initialized in a function as so:

char a=1;
Thena is set tol each time the function is entered. If you do the same initialization with a static, as in:
static char b= 1;
Thenb is set tol only on the first call. Subsequent entries into the function would not incur the
initialization. If it did reinitialize, what would be the sense of having a static type? This is explained by

the fact that a static does nmuallyuse the stack method of storage, but rather is placed at a fixed
memory location. Again, C does nmequirethe use of a stack, rather, it is a typical implementation.

32 Embedded Controllers

Two useful but not very common modifiers aoatile andconst . Avolatile variable is oe that

can be accessed or modified by another process or task. This has some very special uses (typically, to
prevent an optimizing compiler from being too aggressive with optimizatimue on this later). The

const modifier is used for declaring constanthat is, variables that should not change value. In some

instances this is preferred over usindefine as type checking is now availa
two interchangeably).

5.2 Scope

Scope has to do with wh eaready mantionea thé idea of glaba and lscale n 0 .
in previous work but it is time to delve a little deeper. Generally, variables only exist within the block

they are declared. While it is legal to declare variables inside of a conditional or loop blodtnvediyn

declare variables at the very beginning of a function. Consequently, these variables are known within the
function. That is, their scope of reference is within the function. Nothing outside of the function knows
anything about them. Thus, we sagttthey are local, or perhaps localized, to the function. For example,
consider the two function fragments below:

void func1(void)

{ _

int x;

inty;

/Il ... some code here
}
void func2(void)
{ .

inty;

int z;

/I ... some other code here
}

There & no direct way to access thevariable offunc2() fromfuncl() . Likewise, there is no direct

way to access thevariable offunc1() fromfunc2() . More interestingly, the variables ofunci()

andfunc2() are entirely different! They doot refer to thesame variable. This sometimes can be

confusing for new programmers but it is essential for large programs. Imagine that you were working

with a team of people on a very large program, perhaps tens of thousands of lines long. If the idea of local

scopedihot exi st, youbd have to make sure that every
This would create a nightmare of confusi on. By us
variable for a job within this function. As it only needsetast within this function, its name is only
meaningful within this function. o

I f some form of fAuniversally kn gkwbaloGlodatstcaprettt e m i s
much like statics and are usually stored the same way. If you hawgram that consists of a single file,

you can declare your globals by listing them at the beginning of the program before (and outside of) any
functions. I n this way they wil!/ be read by the ¢
functions ttat follow. Do not get in the habit of declaring all variables as global. This is considered a bad

and inefficient coding method. Get into the habit of using locals as the norm and resort to globals only

when called for.

Embedded Controllers 33

If you have a multiple file projéchow do you get the functions in the second file to recognize the globals
declared in the first file? | n #itclhde sdirecave.&ar you ol |
example, suppose your project consists of two C source files namedriddarac.

In foo.c you declare the following global:
int m;

I n order for the fMmunycotuidolnls cirne abtaer .ac hteoa dfiesre efdi | e, P
contain the following:

extern int m;

Meaning that an integer namexdhas been ddared externally (i.e., in another file). At the top of bar.c
youol | add the | ine:

#include <foo.h>

So, when bar.c is compiled, the compiler will first open up foo.h. It will see that the varibhfebeen

decl ared el sewhere rdmd|pwt d iistt 6i.n Ila fAkreawrc owma i nue
you code. Whenitcomesacress h some function, the compiler Aund:
was declared in another file. No problem!

So, you can now see that header files agelgrcomposed of definitions and declarations from other
places, namely external data and function prototypes.

5.4 Exercises

1. Assume a function declares a variable likessatic int x=0; The function increments the
variable and then prints its valu&/hat does the function print out on the tenth call to the function? How
would this change if thstatic keyword was not used?

2. Consider the following snippet of code:

void doug(void)

{

int x=0;

X=X+1;

printf(i 9%\dn 0 ,Xx);
void dinsdale(void)
{

int x=20;

X=X+1;

printf(A %\d 0 ,x);
}

Suppose you catloug() five times in a row and then calinsdale() five times in a row. What would
the resulting output look like?

34 Embedded Controllers

Embedded Controllers

35

6. C Arrays and Strings

6.1 Introduction

Up t o now we muchhabotrcliatacter srings,ehdt is, variables that containuroaric

data such as a personds name or address. There is
strings are nothing more than arrays of characters. Arrays are a simple gafuijegariables in a

sequence, each with the same name and accessed via an index number. They behave similarly to arrays in
most other languages (or lists in Python). C arrays may have one, two, or more dimensions. Here are a

few example declarations:

float results[10]; An array of 10 floats
long int x[20]; An array of 20 longs, or 80 bytes
char y[10][15]; A two-dimensionarray, 10 by 15 chars ead§0 bytes total

Note the use of square brackets and the use of multiple sets of square brackgie falimmension
arrays. Also, C arrays are counted from index O rather tA&odexample, the first item oésults[]
isresultsf0] . The last item isresults[9] . There is no such item hererasults[10] . That
would constitute an illegal access. You paeinitialize arrays by listing values within braces, each
separated by a comma:

double a[5] = {1.0, 2.0, 4.7, -177.0, 6.3e4};
If you leave the index out, you get as many elements as you initialize:
shortint b[]] ={1, 5, 6, 7}; /* four elements */

If you declare more than you initialize, the remainder are set to zero if the array is global or static (but not
if auto).

short int ¢[10] = {1, 3, 20}; /* remaining 7 are setto 0 */

If you are dealing with character strings you could enter the ASClsdod¢he characters, but this

would be tedious in most cases. C |l etbs you speci
translation:
char m[20] = {6mb6b, o6Yy6, 6 6, 6d6, 606, 6gbd, 0} ;

(The reason for the trailing 0 will be evident in a momdetgn easier is to specify the string within
double quotes:

char n[20]={ABill the cato};

Consider the stringn[] above. It contains 12 characters but was declared to hold 20. Why do this? Well,

you may need to copy some other string into this varialddw#ure time. By declaring a larger value, the

variable can hold a larger string later. At this point you might be wondering how the C library functions
Aknowd to use just a portion of the all2ocated spa

5 The reason for this will be apparent when we cover addresses and pointers.

36 Embedded Controllers

characters). This is possible through a simple llestrings must be null terminated. That is, the

character after the final character in use must be null, numerically 0. In the case of the direct string
initialization ofn[] , the null is automaticll added after the final character]n the case of the
charactetby-character initialization of[] , we had to do it manually. The null is extremely important.
Functions that manipulate or print strings look for the trailing null in order to deterrigie their work

is done. Without a null termination, the functions will just churn through memory until they eventually hit
a null, which may cause system violations and even application or operating system crashes. Note that

char my_pet[] = {fAfidoo};

actally declares five characters, not four (four letters plus the terminating null). As C counts from index
0, this declaration is equivalent to:

my pet[0] = o6f0;
my _pet[1]= 06i 06;
my pet[2]= 6dob;
my pet[3]= 60606;
my_pet[4]= 0;

The trailing null may also beritten asé\ 0 6 It is important to note that without the backslash, this has
an entirely different meaningh 0 6means null, bué 0 eans the numeral O.

6.2 String Manipulation

A confusing aspect of C strings for beginners (especially those commd@#&IC or even Python) is
how to manipulate them. That is, how do you copy one string to another, compare strings, extract a

substring, and so forth? As strings aff=e;really ar
Instead, we rely on aes of string functions found in the string library. To use these functions, you need
to link your code with the string library and usaclude <string.h> at the start of your code. To

copy one string to another, ustecpy() . The template is:

strcpy(d estination, source);

So, if you wanted to copy the contentsf _pet[] inton[] , you could write:
strepy(&n[0], &my_pet[0]);

I f youbre awake at this point, you might ask @fWha
string copy function needse the starting addresses of the two arrays. In essence, all it does is copy a
character at a time from the source to the destin
already s een &toheeatorfeariibidwhensvs looketisatanf) . So, all wedre sa
i s fiFor the source, st ar tmygdt] andforthaddstimatos, stastfat t he f
the firstcharacteraf] . 6 Thi s can be a |l ittle cumber amhe, so
[as sort of canceling each other out. Wedd nor mal

strcpy(n, my_pet);

Note that it is perfectly acceptable to use an index other than zero if you need to copy over just a chunk of
the string. You coul d starntd goupyi ngege tf riicdne o0i n dnesxt eZ2a d

Embedded Controllers 37

strepy(n, &my_pet[2]);
This can also be shortcut by using:

strcpy(n, my_pet+2);

that is, dondét start amypethe sdadres ehatrletfirsst a
this sort of manipul&n much closer when we examine addresses and pointers.

What happens if the source string has more characters than the destination string was allocated to? For
example, what if you did this?

strecpy(my_pet, n);

This results in a memory overwrite thaincaccidentally destroy other variables or functions. Very bad!

Your program may crash, and in some cases, your operating system my crash. To protect against this, you
can ussstrncpy() . This places a limit on the number of characters copied by addiivgl athument.

As the destination only has space for 5 character

strncpy(my_pet, n, 5);

This function wil!/ stop at 5 characters Unfortun
the | imit is r eac headdtheTotbowibgdinesaf e, youbdd need
my_pet[4] = O; /* force null termination */

Remember, as C counts from 0, index 4 is the fifth (and final) element. There are many functions
available to manipulate strings as well as individual characters. Here is a short lis

stremp() Compares two strings (alphabetically)

strempi() As above, but case insensitive

strncmp() Compares two strings with max length

strncat() Concatenate two strings with max length
strlen() Find length of string (count of chars before null)

Figure 6.1, string functions

The following work on single characters. Again th
there. Use#include <ctype.h>

isupper() Determines if character is upper case
isalpha() Determines if character is alpteilz (not numeral, punctuation, etc
tolower() Turns character into lower case version

Figure 6.2, character functions

38 Embedded Controllers

I f you donét have |library documentation, it can b
look at the functionprott ypes t o see whatos avaonatl|ledi Whahever

Finally, if you need to convert numeric strings into integer or floating point values, use the functions
atoi() ,atol() andatof() . (ASCIIto int orlong intin stdlib.h, ASCto float in math.h).

6.3 Exercises

1. Write the code to declare an array of 12 single precision real numbers.

2. Write the code to declare an array of 15 eight bit signed integers.

3. Assume that an array of 100 double precision real numberedasleclared and is nameaints
Write the code to print out the first itemmdints . Also, write the code to set the last itenpoints to
0.0.

4. Declare a string calledammaland initialize it to the worevoodchuck

5. Do you see any potentialgiiems with this snippet of initialization code? If so, explain the issues and
how they might be corrected.

char bird;

CoToToToTooT
0000000
— — —_— — ———
OO BAWNEO
[e} N e e NeoNe Ne Ne)
so——npso0
[e} N e e e Ne Ne Ne)

U

Embedded Controllers 39

/. C Conditionals and Looping

7.1 Conditional s

C uses a fairly standard if/else construct for basic conditionals. They may be nested and each portion may
consist of several statements. The condition itself may have multiple elements and be formed in either
positive or negative logic. The basic canst is:

if(test condition(s). o)

/I ...do stuff...
}

The else portion is optional and looks like:

if(test condition(s)..)

{
/I ...do stuff...
}
else
{
/I ...do other stuff...
}

If there is only a single statement in the block (i.e., betweebrtuwes), the braces may be removed if
desired:

if(test condition(s)..)

/I ...single statement...
else

/I ...do other statement...

The test condition may check for numerous possibilities. The operators are:

== equality

I= inequality

> greater than

< less than

>= greater than or equal to
<= less than or equal to

Figure 7.1, relational operators

It is very important to note that equality uses a double equal sign. A single equal sign is an assignment
operation. Donét t hi withong symholddr each word. ou mkyalsses a me as 0,
Boolean (logi¢ operators, as shown in Figur.2.

40 Embedded Controllers

I OR
& AND
! NOT

Figure 7.2, logical operators

Note that the logical operators dot behave the same as the similarly named bitwise operators. For
example, a logical AND returns TRUE if its two arguments arezssa, not necessarily the same bits.

Thatis1 &2 vyields0, butl && 2 yields TRUE.TRUE is taken to be any norzero value.Any

variable or expression that evaluates to a value other thatsZegically TRUE. If the result is zero,
then it is logically FALSE. Time for some examples. The conditional is written as a fragment with an

explanation following:

if(a==6)
/* taken only if the variable ais a 6 */

if(b!=7)
/* take naslonga s the variable b isndt 7

if((a==6) && (b!=7))
/* taken as long as a is 6 and b is something other than 7 */

if((@==6) || (b!=7))
/* taken as long as a is 6 or b is something other than 7 */

if(la==0)
/* taken if a is zero */

if(la)
/* ano ther way of saying taken if a is zero */

if(a!=0)
/* taken if a is not zero */

if(a)
/* another way of saying taken if a is not zero */

How you word something is up to you. The following two code fragments are equivalent:

if(a==b)

do_x();
else

do_y();
if(al=b)

do_y();
else

do_x();

It is very common for new programmers to esghen they want=. This can have disastrous results.

Consider the following code fragment

Embedded Controllers

41

if(a=b)

What does this do? At first glance, you might think it téstsee ifa andb are the same. It does nothing
of the kind! Instead, it assigns the valuéab a and then checks to see if that value is-mero. In other
words, it does this:

a=b;
if(a)

A trick to help you with this, at least with constantspisdverse the normal order. Instead of writing
if(a==6) , useif(6==a) . This way, if you accidentally use a single equal sign, the compiler will
cough up a syntax error.

7.2 Nesting

I f a multiple condition wogstrfytondtianalsiseasy: you can nes

if(test condition(s)..)

{
if(other tests..)
{
}

else

if(still other tests..)

{
}
else
{
}

You can go many |l evels deep i f vyequiretheindentirg. Note t
shown, but it is expected formatting. For selection of a single value out of a list, you can use the
switch/case construct. The template looks like:

switch(test_variable)
{
case value_1:
/I ...do stuff...
break;
case value_2:
/I ...do other stuff...
break;
default:
/I ...do stuff for a value not in the list...
break;

42 Embedded Controllers

Thedefault section is optional. Also, it does not have to be the final item in the lisbréb is left

out, the code will simply fall through to the next case, otherwide eaecution jumps to the closing

brace. Also, cases can be stacked together. The action statements for each case may include any legal
statements including assignments, function cégse , otherswitch/case , and so on. Note that

you cannot check faranges, nor can the cases be expressions. The cases must be discrete values. The
following example shows all of these. The action statements are replaced with simple comments.

switch(x)
{
case 1:
/* This code performed only if x is 1, then jump to cl osing
brace */
break;
case 2:
/* This code performed only if x is 2, then jump to closing
brace */
break;
case 3:
/* This code performed only if x is 3, but continue to next
case (no break statement) */
case 4:
case 5:
/* This code pe rformed only if X is 3, 4, or 5, */
break;
default:
/* this code performed only if x is not any of 1,2,3,4, or
5, then jump to closing brace (redundant here) */
break;
}

Sometimes it is very handy to replace the numeric constants#aétne values. For example, you
might be choosing from a menu of different circuits. You would create gdefiee values for each at
the start of the file (or in a header file) as so:

#define VOLTAGE_DIVIDER 1
#define EMITTER_FEEDBACK 2
#define COLLECTOR_FEEDB ACK 3
/* etc... */

You would then write a much more legible switch/case like so:

switch(bias_choice)

{
case VOLTAGE_DIVIDER:
/* do volt div stuff */
break;
case EMITTER_FEEDBACK:
/* do emit fdbk stuff */
break;
/* and so on. L
}

Embedded Controllers 43

7.3 Loo ping

There are three looping constructs in C. Theyduie() , do- while() , andfor() .do-while() is

really just awhile() with the loop continuation test at the end instead of the beginning. Therefore, you
always get at least one iteration. The contilmatest follows the same rules as tile construct. Here

are thewhile() anddo- while() templates:

while(test condition(s).)

{

}
do {

/l. ..statements to iterate.

/I ..statements to iterate.
} while(test condition(s).)

Here are some exanes:

while(a<10)
{

/* Perhaps a is incremented in here.
If a starts off at 10 or more, this loop never executes */

}
do {
/* Perhaps a is incremented in here.

If a starts off at 10 or more, this loop executes once */
} while(a<10)

while(a <10&&b)
/* This loop continues until a is 10 or more, or b is zero.
Either condition will halt the loop. Variable a must be
less than 10 and b must be non - zero for the loop to
continue */

}

Usually, loops use some form of counter. Bheious way to implement a counter is with a statement
like:

a=a+l; /* add one to the current value of a */
C has increment and decrement operatersind-- , So you can say things like:

a++; /*add one to the current value of a */
a-- ; [*subtract one from the current value of a */

C also has a shortcut mode for most operations. Here are two examples:

a+=1; /[* equivalentto a=a+1; or a++; */
a*=2; [* equivalent to a=a*2; */

44 Embedded Controllers

You will see all three forms of increment in example and production clideugh the increment and
decrement operators are generally preferred.

Thefor() construct is generally preferred over titgle() if a specific number of iterations are
known. The template is:

for(initialization(s); termination test(s); increment(s))

..Statements to iterate..

}

Here is an example using the variable a as a counter that starts at 0 and proceeds to 9 by adding one each
time. The loop iterates 10 times.

for(a=0; a<10; a++)

{
}

[* stuff to do ten times */

The following example isimilar, but adds 2 at each loop, thus iterating 5 times.

for(a=0; a<10; a+=2)
{

}

/* stuff to do five times */

The next example uses multiples. Note the use of commas.

for(a=0, b=1; a<10; a++, b*=3)
{

}

/* stuff to do ten times */

In this casewo variables are initialized. Also, at each loop completigs,incremented by 1 ariis
multiplied by 3. Note thadb is not used in the termination section, although it could be.

If the iterated block within the braces consists of only a single statethe braces may be left out (just

like in theif/felse construct). Loops may be nested and contain any legal C statements including
assignments, conditionals, function calls and the like. They may also be terminated early through the use
of the break sttement. As in thewitch/case construct, théreak command redirects program flow to

the closing brace. Here is an example:

for(a=0, b=2; a<7; a++)

{
while(b<a*10)
b*=2;
if(b >50)
break;
}

Embedded Controllers 45

Note that theéf() is not part of thewhile() . Thisis visually reinforced by the use of indents and
spacing, but thatdéds not what makes it so. The cod

for(a=0, b=2; a<7; a++){ while(b<a*10) b*=2; if(b>50) break;}

Obviously, the former style imuch easier to read than the later. Ktimngly recommended that you
follow the first style when you write code.

OK, what does the code fragment do? First, it séts0 andb to 2. Then, thevhile() checks to see b

is less than 10 times. 2 is rot lessthan 0, so thehile) doesndt it &) acheekstobBeext , t h
ifbi s more than bbefk.i slrnt®ts exoec utseod .t hfehat concl udes t
second iteratiormi s i ncremented to 1 assthand.ltes,csktbedoog o see i f
continues and enters thvdile() . b is smaller than 10 times (2<10), sadb is doubled to 4. This is still
small er so itdéos doubled again to 4, and again to
timesa sothewhile() loopexits. Thef) i sndét true as 16 beak N®hoO6t arger

taken. We wind up finishing iteration two by incrementingp 2. Thewhile() loop starts becaude

(16) is less than 10 times(now 20). The loop will only executince, leavind at 32. This is still less

than 50, so thereak is ignored. Thefor() closes by incrementing to 3. On the next iteration both

thewhile() andif() areignored ab is less than 10 timesas well less than 50. All that happens as

thata is incremented to 4. Now thatis 4, thewhile() starts again (32<40h.i s doubl ed to 64.
greater than 10 times so thewhile() exits. b is now greater than 50 so tii¢ is taken. This results

in executing théwreak statement that directs gy@am flow to the closing brace of ther() loop.

Execution picks up at the line following the closing brace and we are all done with(theloop (no,a

never gets to 7). This example is admittedly a little tricky to follow and not necessarily tlvediagt

practice, but it does illustrate how the various parts operate.

7.4 While or For?

So, which do you usevehile() or afor() ? You can make simple loops with either of themfbug}

loops are handy in that the initialization, termination, anceiment are all in one spot. Withile()

loops, you only specify the termination, so you must remember to write the variable initializations before
the loop as well as the increments within the loop. If you forget either of these your loop will behave
errdically. It may fail to terminate altogether, resulting in an infinite loop, as shown below.

a=0;
while(a<10)
{
printf (AWnedl)l;o
}

This code fr agme n thellcdem énses, i printdgpeloforever (dar bedter tev gay htil you
forcibly terminate the program)! Althoughwas initialized and tested, it was never incremented. You
need ana++; (or similar) within that loop.

46 Embedded Controllers

7.5 Exercises

1. Write the code to examine the value of thevariable | f i t 6 s | e s s netptivavaluez er o,

should be printed.

2. Write the code to examine the value of the varigble | f itéds equaderovaloe zer o,

should be printed.
3. Write the code to compare the values of the variabdslY. The greater value should be peid.

4. Write the code to examine the values of the variabewdY. If bothX andY are greater than zero,
incrementx by one.

5. Write the code necessary to print the mesEage! six times but without using six sequential
printf() calls.

6. Wiite the code required to control a loop so that it continues so long as the vaitldss than 50.

7. Write the code needed to cycle the variabiieom 100 to 200 in steps of 5 (i.e., 100, 105,,1¢t0).

8. Explain the practical difference betwegwhile loop and alo- while loop.

Embedded Controllers 47

t

t

h

8. C Pointers and Addresses

8.1 Introduction

As you may recall from earlier course work, every byte of memory in a computer system is identified by a
unique address. C works directly with addresses and this is amn ey it can be used to create

efficient and powerful code. You can obtain the address of virtually any variable or data item using the
Afaddr ess &fOde excepton ® this is thegister ¢l ass variable. This is
regi st bavesan addres®like normal memory. Also, as functions are just memory locations filled

with microprocessor/microcontroller aqodes, C also makes it possible to obtain the starting address of
functions.

8.2 Using Addresses and Pointers

If we declare avariable as so:

char a;

then referencing will get us the value stored a as in the codéb=a; . Using theaddress obperator,

as in&a, will obtain the memory location @, notab s val ue or contents. Thi s i
with scanf() andstrcpy() . Itis possible to declare variables that are designed to hold these addresses.
They are calleghointers To declare a pointer, you preface the variable with an asterisk like so:

char *pc;

The variablepc is not achar , it is a pointer to ahar . That is, its contents are the address dfaa
variable. The content @nypointer is an address. This is a very important point. Consider the following
code fragments based on the declarations above:

pc = a; [* unhappy */
pc = &a; /* just fine */

The first line makes no sense as we are trying to assign apples to oranges, so to speak. The second line
makes perfect sense as bpthand&a are the same sort of thing, namely the address of a variable that
holds achar . What if we want pointers to othkinds of things? No problem, just follow the examples
below:

float *pf; /* pointer to a float */

long int *pl; /* pointer to a long int */

double *pd, *p2; /* two pointers to doubles */

short int *ps, i; /* ps is a pointer to a short int */
[*iis just a short int */

As mentioned, all pointers contain addresses. Thereformatter what the pointer points to, all

pointers are the same size (same number of byte#) most modern systems, pointers eitber 32 bits

(4 bytes) 0164 bits(8 bytes)althoughsome small controllers use 16 bit addressing. When in doubt, you
can check your code wittizeof() . If all pointers are the same size, then why do we declare different

48 Embedded Controllers

types of pointers? There are two reasons. First, this helps with type checkiotioRs that tad pointers

as argumentsorthatet urn pointers wil/l be using certain for
send off a pointer toffoat when the function expects the address sfat int for example.

Second, by specifying ¢htype of thing the pointer points to, we can rely on the compiler to generate
properpointer math(more on this in a moment).

8.3 Pointer Dereferencing

Suppose you have the following code fragment:

char *pc, c, b;

c =1,

pc = &c;
We have declared nwariables, @har and a pointer to ehar . We then set the contents of tter to
1, and set the contents of the pointer to the address didhe We donét really need t
address i s, but f or t hceslosatedad membry aaldre3a2008 wigikeis | et 6 s s
|l ocated at memory address 3000. I f we were to sea

find the number 1. At address 3000, we would find the number 2000, that is, the addresbanf the

variable. In aypical system, this value could span 32 bits or 4 bytes. In other words, the memory used by
pc is addresses 3000, 3001, 3002, and 3003. Conversely, in a 16 bit gstwoyld only span 3000

and 3001 (half as many bytes, but far few possible addresses).

As the contents of (i.e., value @@ tell us where &har resides, we can get to that location, and thus the
value of thechar variablec. To do this, wealereferencehe pointer with an asterisk. We could say:

b = *pc;
Re ad thgetstheaaduatiihe address givenlpgd . T Ipcadto eissn,6t gi ve us the v
tells us where to go to get the value. ltdés as if
grade, and instead he hands-mgaolu iat ptioe cyeo uodf. pTahpee rp @

indicate your grade, but it shows you where to find it. This might sound unduly complicated at first but it
turns out to have myriad uses. By the way, in this example the vabueitbe 1 becausec points toa,

which was assigned the valaeat the start. That i$, gets the value at the addresspoints to, which is
simplya.

8.4 Pointer Math

One of the really neat things about pointers is pointer math. Returning to our exapypkt afldress

3000, if you incremet pc, as inpc++; you 6 | | get 3001. No surprise, rig
a pointer taadouble ,pd, at address 3000 and you incremented i
fact, youdd wind up with 3008e tWhiyn?g Tihsi st hcaotmewse 6droe

double s are 8 bytes each. If you had a bunch of them, as in an array, incrementing the pointer would get
you the next item in the array. This is extremely useful. Note that adding and subtracting to/from pointers
makes pdect sense, but multiplying, dividing, and higher manipulations generally make no sense and are
to be avoided.

Embedded Controllers 49

8.5 Pointers and Arrays

We very often use pointers with arrays. One example is the use of strings. We noted this in earlier work.

Recallthatte fiaddress of o0 and array index HfAcancel each
&somestring[0] somestring
Letds | ook at an example of how you might use poi

our own version oftrcpy() to cqy one string to another. The function takes two arguments, the
address of a source string and the address of a destination string. We will copy over a character at a time
until we come to the null termination. First, the normal array index way:

void strc pyl1(char dest[], char source]])

int i=0; /* index variable, init to first char */

while(sourceli] 1= 0) [* i f itds not null .. .*/
dest[i] = source]i]; /* copy the char */
i++; /* increment index */

Lest[i] =0; /* null terminate */

Looks pretty straight forward, right? There are some minor improvements you can make such as changing

the loop towhile(source[i]) , but thatés not a big deal. Now i n
using pointers.

void strcpy2(char *dest, ¢ har *source)

while(*dest++ = *source++);

}
Thatdés it. H edese éndsource ware thd staminy adkdresses of the strings. If you say:

*dest = *source;

then what happens is that the value tvatce points to gets copied to the addresferred to bylest .
That copies one character. Now, to this we add the post increment opetator

*dest++ = *source++;

This line copies the first character as above and then increments each pointer. Thus, each pointer contains

the address of thenexth ar act er i n the array (youbve got to | o
sized datum). By placing this code within thigle() loop, if the content (i.e., the character copied) is
nonzero, the |l oop wildl c 0 n tterminatieg nulllh&iséoeeh aomiepl. Aswown 6t st «

can imagine, the underlying machine codestarpy2() will be much simpler, more compact, and
faster to execute than thatsafcpyl() . As was said at the outset of the course, you can do a lotin C
with just a litle code!

50 Embedded Controllers

8.6 Exercises
1. Declare a pointer to a floating point variable, namirfgtit .
2. Declare a pointer to a signed character variable, namipg it.
3. Consider the following snippet of code:

unsigned char c, *p;
Explain the differencediweenc andp.

4. Consider the following snippet of code:

unsigned char *p;
double *p2;

Assume that the value pfis currently 1000 and the value# is 2000. What are their values after the
following piece of code is executed?

p++;
p2++;

5. Explan the difference between theand& operators in relation to pointers.
6. Consider the linef code below.
a=b* c;
Is the* operator a pointer dereference or a multiply? How do we know?
7. Consider the linef code below.
a=b* c;

What do you thik this line does? How might you alter this line to mark the intent more clearly and less
prone to error or misinterpretation?

8. Explain the difference between the two lines of code below.

a*=b;
a=*b;

Embedded Controllers 51

9. C Look-up Tables

9.1 Introduction

Sometimes weise tools to make things without thinking about how the tools themselves are made. In the
world of software, sometimdwwthings are done (the implementation) can have a huge impact on
performance. It turns out that sometimes you can trade performaoce area for another. For example,

a certain technigue might be very memory efficien
look at a common programming technique that is very fast. Sometimes it can require a lot of memory,
sometimesnol. t 6 s c a-Uplitabld. a | ook

920Yes, | dd Li ke a Tabl e for 360,

Consider the common C trig functiagin() . Not much to it, really. You pass it an argument and you get

back the sine of the argument. But how is it implemented? It could be imyksires a Taylor Series
expansion that requires several mul tiplies and ad
you need to do millions of them? All of those multiples and adds add up, so to speak. Consider the

following problem: You neg to get the sine of an angle specified to the nearest degrdasand

Basically, you have 360 possible answers (0 degrees through 359 defteas3uppose you create an

array of 360 values which consists of the sine of each angle in one degree imsystaeing at 0

degrees and working up to 359 degrees. It might look something like this:

double sine_table[] ={ 0.0, 0.01745, 0.034899, 0.05234,
/* and so on to the last entry */ -0.01745 };

You can now Acomputeo t kreangki:ne | i ke so, given the
answer = sine_table[angle |;

Because of the duality of arrays and pointers, you can also write this as:
answer = *(sine_table + angle);

Without an optimizing compiler, the second form will probably generate more efficient machine code. In
eether case, this is very fast because itbés nothin
The result is just one add plus the access instead of a dozen multiply/adds. It does come at the cost of 360
double floats, which, at eight byteschais nearly 3k of memory. By recognizing that the sine function

has quarter wave symmetry, you can add a little code to check for the quadrant and reduce the table to just

90 entries. Alsofloat s might have sufficient precision for the application whigh cut the memory

requirements in half again when compareddable s.

6 Qutside those bounds you can always perform some minor integer ngethviithin the boundge.g, if the angle
is 370, just mod by 360 to get the remainder of 10 deg!

52 Embedded Controllers

To make the above just a little spiffier, you can always make it look like a functiontddise as
follows:

#define fast_sin(a) (*(sine_table+(a)))

Of course, a down side this operation is that it only deals with an integer argument and is only accurate
to a single degree. You can alter the definition to allow a floating point argument and round it to the
nearest whole degree as follows:

#define fast_sin(a) (*(sine_table +(int)((a)+0.5)))

You could also turn this into a true function and add code to interpolate between adjacent whole degree
entries for a more accurate result. At some point the extra refinements will slow the function to the point
where a more direct comfation becomes competitive.

9.3 Waving Quickly

So whatodés all this business about needing to do t
direct digital synthesis of arbitrary waveforms. The idea is to create a waveform of an arbaparyrot

just the usual sines, squares and triangles. This is possible but can be tricky to do with analog oscillator
techniques coupled with waveshaping circuits. Instead, consider creating a large table of integer values.
Typically, the table size woulde a nice power of two, like 256. Each entry in the table would be the

digitized value of the desired waveform. A simple ramp might look like this:

unsigned short int ramp_table[] ={ 0, 1, 2, 3, /* and so on */};

A more complicated wave might look liklais:
unsigned short int squiggly_table[] ={0, 21, 15, 33, /* etc */};

These values could then be sent sequentially to a digitaialog converter (DAC) to create the desired
waveform. Once we get to the end of the table, we simply loop back $tathéo make the next cycle.

With a 256 entry table, we can useumgigned char as the table index and once it reaches 255,
incrementing it will cause it to roll over back to 0, automatically. The post increment operator is ideal for
this. For the codedbow, assume PORT is the memory location of the DAC we are writing to.

unsigned char i = 0;
/l'loop forever
while (1)
{
PORT = ramp_table[i++];

/I now wait between each value, dependent on sample rate
delay();

Embedded Controllers 53

9.4 Error Correction via Table Translation

Another possible use foraloekp t abl e i s for error correction. Ag:
table. Suppose you are reading a sensor with an 8 bit (256 level)-tmdiggal converter (ADC).

Maybe this is a temperature senaad at the extremes of the temperature range it tends to go out of

calibration. You can use the input value from the sensor (perhaps appropriately scaled and then turned

into an integer) as the index into a 256 element table that contains the coradegsd v

As an example, to keep it simple | etds say the se
calibrate it by placing it in a known 150°C oven and the sensor reads 145° instead of the ideal 150°. You
repeat this process at several otha mper at ures and discover that it r

when itoés really 195U, and <d'entryoisnl50,tBeolfbgntryis 1, e at e a
the 188 entry is 195, etc. Now use the sensor value as the indethintoray. The value you access is
the corrected result. The table effectively translates your input into a calibrated output.

corrected_temp = calibration_array[sensor_value |;

This is a very fast process and as accurate as your calibration meassréséong as the sensor data is
repeatable (e.g., it always readsd3H al1l50C oven), youbl | get good resul

54 Embedded Controllers

Embedded Controllers

55

10. C Structures

10.1 Introduction

C allows compound data called structurestarct for short. The idea is to use a variety of tasic

data types such fisat orint to describe some sort of object. Structures may contain several of each
type along with pointers, arrays, and even other structures. There are many uses for such a construct and
structures are very common in product®mode.

As an example, we may wish to describe an electronic component such as a transistor. What sort of things

do we need? There are several performance parameters that may be used such as current gain, breakdown
voltage and maximum power dissipatiédl. of these items may be representediasble variables.

There will be a model number. This will probably be a string as it may contain letters (such as
A2N390406). There wildl need t o inte. Aeal malcdevicawit ur er 6 s
have many more parameters than these five, but these will suffice for our purposes. If you only have one
transistor to deal with, five separate variables is not a big deal to keep track of. On the other hand, what if

you have a great number of partdraa database? Perhaps there are 1000 devices. Creating 5000 separate
variables and keeping them straight presents a bit of a challenge. It would be nice if we could combine the
five items together into a fsupigareatm@lOdoafthenefor. Then
the database (perhaps with an array, although the
getting the current gain of one device confused with that of another. This is where structures come in.

Below is an exaple of how we would define this transistor structure and associated instances.

struct transistor {

double currentgain;
double breakdown;
double maxpower;
short int manufacturer;
char model[20];
|3
struct transistor my_transistor;
struct transi stor *ptransistor;
We have defined a structure of typansistor . We have also declared an instance cfract
transistor calledmy_transistor , along with a pointer to struct transistor called

ptransistor . The five elements are referred to asfiblels of the structure (e.g., theirrentgain

field). Note that this structure contains an array of characters for the model name/number. The model
cannot exceed 19 characters (19 plus terminating
havemodel name/number this long, but if by chance we do, we will have to truncate it.

To set or retrieve values from an instance, we use a period to separate the structure name from the field of
interest. Here are some examples:

my_transistor.currentgain = 200.0;
my_transistor.maxpower = 50.0;
my_transistor.manufacturer = 23;

56 Embedded Controllers

In the last assignment, it may be better to ugdefine rather than a hard number. For example, place
the following definition in a header file and then use the assignment below:

#define MOTOROLA 23

my_transistor.manufacturer = MOTOROLA;

To set the model field, you could do something like this:

strcpy(my_transistor. model, @A2N39040) ;

Rememberstrcpy() needs addresses. The double quote string literal produces this automé&iically.
the model field, we are using the shortcut described in earlier work. The line above is equivalent to:

strcpy(&(my_transistor.model [0]), @A2N39040) ;

If you need to use a field in a computation or comparison, the access is unchanged:

if(my_transis tor.breakdown > 75.0)
printf(fAiBreakdown voltage is\mbd)]l east 75 volts!

A good question at this point is whether of notdieelaredorder of the fields makes any difference. This
depends on the compiler and target hardware. In some processondgerhyte variables such desng

and shortnteges, floats and pointers must beord aligned For example, a short int may be required to

start on an even address or a float might be required to start on an address divisible by four. In such a
system, a sucture declared with the ordef char, float, char, int will neegad bytedetween some fields

to ensure alignment and will take up more memory space than if the structure was organized as float, int,
char, char. This is of particular importance if kuayrays of structures are to be used.

10.2 Pointers and Structures

It is generally not a good practice to send entire structures to functions as arguments. The reason is

because you wind up copying a lot of data. The transistor structure above citmégdsuble s at 8

bytes each, short int at 2 bytes, and 20 bytes for ttlear array, leaving a total of 46 bytes of

memory that need to be copied if we pass this to a function. It would be much more efficient if we simply
passed the starting addre$she structure to the function. That is, we tell the function where to find the
structure by wusing a pointer (this is called Apas
valued). Thi s ptrassisterh y . Weanitialize i likeaso e d

ptransistor = &my_transistor;

To access the various fields, we can longer use the period because we no longstriictve a
transistor ; we have a pointer to one. For pointers, we access the fields via the pointer token, which is
made up of a dash folied by a greater than sigrne Thus, we might say:

ptransistor - >currentgain = 200.0;
strcpy(ptransistor ->model , A2N39040) ;

Embedded Controllers 57

Below is a function that simply prints out the values of the various fields.

void print_transistor(struct transistor *pt)

{
printf(AFor mMadel :pmédsl);
printf(fACurrent dmd n -pdrreptdain);
printf(fABreakdown vamhao agehreaksowpo), f
printf (AMaxi mum plonwe rr -pirnsxpdderi;

}

/' * note use of %s for string and %, toubles/r
We pass the function a pointer to a transistor structure like so:

print_transistor(&my_transistor);

/* we could also use print_transistor(ptransistor);
if we initialized it as above */

10.3 Structures, Arrays, and So On

Al ong f 1l oa

We haveseen that it is possible to have arrays within structures. It is also possible to have structures

within structures and pointers within structures. Here are some examples:

/* The structure definitions */
struct foo {

float x;
float y;

h

struct bar {
double *pd;
struct foo littlefoo;
struct foo *pf;

3

/* The variable declarations */
struct foo my_foo;

struct bar my_bar;

struct bar *pbar = &my_bar;
double z=1.0;

Thebar structure contains a pointer taleuble , a pointer tatruct foo , and astruct foo . We

would access them as follows:

my _bar.pd = &z; [/ * pd isndt a double but
my_bar littlefoo.x = 2.2;

pbar - >littlefoo.y = 3.3;

pbar - >pf = &my_foo;

pbar - >pf - >x = 4.4;

t

he

Note that i dbary>pfa&my fod n itst, tleempyar - >pf - >x =4.4; would be very

evill Without assigningny_foo to pf , this pointer would contain some random number. The second

statement would then use that number as the starting addssgiofbo , and write the number 4.4

58 Embedded Controllers

addr es

wherethex fieldshoul d be. As itds highly wunlikely that thi
struct foo , the number 4.4 overwrites something else. That might mean other data or even code gets
destroyed. Your program behaves erratically or crashes.

Pointer Rule Number One: Never dereferencéan uninitialized pointer!

Only bad, evil things will happen and you will become a very sad programmer.
At the beginning of the transistor example we noted that we might want to create a bunch of transistors.
One possibility s t o use an array. There are other ways, a
array of 1000 transistor structures, given the definition above:
struct transistor transistors[1000];

You would access the field as follows:

transistors[0].currentga in = 200.0; [/ * set 1lst deviceds gain
transistors[2].breakdown = 85.0; [/* set 3rd devicebo

Finally, it is also possible to create an array of pointers to transistor structures:
struct transistor *ptarray[1000];

Note that we d not have 1000 transistor structures, but rather 1000 pointers. Each of these would need to
point to an appropriate transistor structure. Assuming you had declared onenmanmmeaasistor as
we did earlier, you could write:

ptarray[0] = &my_transistor;

And you could access fields like so:

ptarray[0] - >maxpower = 25.0;

Although this may look a little odd at first, this sort of construct does have some good uses in more

advanced applications. To stretch your mind just a teensy bit further, C makesbieptossreate

something like an array of pointers to structures which contain a structure which in turn contains an array

of pointers to still other structures. Read that again, imagine what that might look like as a memory map,

and then write some poskite def i niti ons/ decl arations. I f you ca
idea.

10.4 Exercises

1. Declare a structure of typiguest calledGrail that contains a float callex] a long integer called
and an unsigned character calied

2. Giwen the structure of problem one, wilie order of théhree fields have any effect or importafice
How might we determine if it does?

i.e., try to access the fields of.

Embedded Controllers 598

